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Communication-Efficient Federated
Multi-view Clustering

Jiyuan Liu, Xinwang Liu, Siqi Wang, Xinhang Wan, Dongsheng Li, Kai Lu and Kunlun He

Abstract—Federated multi-view clustering is an emerging ma-
chine learning paradigm that groups the data with each view
distributed on an isolated client while preserving their privacies.
Although recent researches have proposed a few feasible solu-
tions, they are severely limited by two drawbacks. In specific,
the clients are required to share their data representations at
each iteration of model training, leading to heavy communication
overhead. On the other hand, existing researches handle large-
scale data by employing the matrix factorization and neural
network encoding techniques, failing to utilize their similarity
information sufficiently. To address these issues, we propose a
communication-efficient federated multi-view clustering frame-
work by approximating the data representation with pseudo-
label and centroid matrix, where the latter two are shared
in model training. Meanwhile, the framework is instanced by
incorporating linear kernel function to consider the data pairwise
similarities. Note that, corresponding linear kernels are not
required to compute explicitly, making the resultant method able
to be optimized in linear complexity to the number of samples.
Nevertheless, the proposed method is evaluated on benchmark
datasets. It not only achieves inspiring results (26.84% accuracy
improvement on average, 2.9×-2153× computation speedup and
98.4% communication overhead reduction at most) compared
with existing federated multi-view clustering methods, but also
outperforms centralized multi-view clustering approaches on
performance and computation efficiency.

Index Terms—federated multi-view clustering, multi-view clus-
tering, federated learning, linear kernel, matrix approximation

I. INTRODUCTION

MULTI-VIEW clustering is a long-standing unsupervised
learning technique to incorporate data information from

different sources or modalities. In recent decades, a large
amount of multi-view clustering methods have been proposed
and achieved satisfactory performances [1]–[6]. Commonly,
almost of them assume that the multi-view data are centralized
and available unconditionally. However, in numerous real-
world applications, the data are distributed across different
devices, organizations or owners, and restricted to share due
to privacy concerns. For example, when making advertisement
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delivery, Internet content providers usually match potential
target customers by analyzing the user profiles from multi-
ple aspects, such as basic information, financial conditions,
shopping records, etc. These profiles are mostly possessed by
the providers, banks and shopping platforms which would not
exchange their raw data directly. In this background, federated
multi-view clustering is emerging to be a promising solution
and has attracted a lot of research interest in recent years [7]–
[12].

Briefly, federated multi-view clustering is a machine learn-
ing paradigm that groups the distributed multi-view data into
categories while preserving their privacies [7], [8]. Typically,
it is composed of multiple isolated clients and an independent
server. In specific, each client corresponds to a data holder
which possesses only one view of the data, whereas the
server always refers to a trusted third-party. In the clustering
procedure, the clients first generate local data representations
with their own data and send them to the server. Once received
by the server, they are integrated to compute a consensus rep-
resentation. Thereafter, the consensus is sent back to all clients
to update the local data representations. By executing the
above processes until convergence, the server will obtain the
desired consensus data representation and compute the cluster
assignments on its basis. Under the aforementioned learning
framework, some researches also customize the generation of
local data representations on clients and the integration of
information on the server to improve clustering performance,
such as [13], [14]. For example, Yan et al. use heterogeneous
graph neural networks to extract data features on clients [13].
Feng et al. adopt graph-based regularization to retain the
local geometric data structure on the server, obtaining better
clustering performance [14].

In order to deal with large-scale data and improve clustering
efficiency, existing federated multi-view clustering approaches
employ the matrix factorization techniques. For instance,
Huang et al. factorize each data view into a low-dimensional
non-negative matrix and local clustering assignment matrix
(i.e. the local data representation) on all clients, achieving
linear complexity [8]. Besides, the neural network encoding is
another popular option to reduce the computation complexity.
Chen et al. use the fully-connected neural network to encode
data on clients [12], while Yan et al. construct a two-layer
graph neural network as encoder to generate data representa-
tions [13].

Although the existing federated multi-view clustering ap-
proaches achieve feasible results, they are severely limited by
the following two drawbacks. It is obvious that the aforemen-
tioned framework relies on data representations to transmit the
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Fig. 1. The proposed communication-efficient federated multi-view clustering framework. It is composed of V clients and a unique server, where each client
holds one view of data and the server is responsible for integrating the information from all the clients. For ease of expression, only clients 1 and V are
shown while the others are similar and omitted here. In addition, the green circle indicates that the data transmissions between clients and the server are
executed cyclically.

information of multiple views between the clients and server
in each iteration. Denoting their dimension and the sample
number to N and d, respectively, the data representation
is of size N × d. Hence, the corresponding communication
consumption is at least O(tdN), in which t refers to the
iteration number. Consequently, a larger d, especially when
dealing with large-scale data, will induce an obvious increase
in computation overhead. On the other hand, although the
matrix factorization and neural network encoding techniques
successfully decrease the computation complexity in data
representation generation, they fail to utilize the similarity
information of data samples sufficiently, leaving room for
further improvement of the clustering performance.

To address these two issues, we, to the first attempt, propose
a Communication-efficient Federated Multi-view Clustering
(CeFMC) framework, as shown in Fig. 1. Similar to the
common federated learning framework, it is composed of
V clients and a unique server, where each client holds one
view of data and the server is responsible for integrating
the information from all the clients. Specifically, each client
first generates the local data representation corresponding to
its own data. Instead of transmitting them directly like the
existing approaches, the proposed framework approximates
them with two parts, including a pseudo-label vector and a
centroid matrix, which are sent to the server with a relatively
low communication overhead. Once all pseudo-labels and
centroids are collected, the server integrates them to compute
the consensus. Then, the consensus are sent back to clients
and used to update the locally generated pseudo-labels and
centroids. By executing the above processes in a number of

iterations till convergence, the desired consensus labels can
be obtained on the server. Moreover, we also instance the
proposed framework by incorporating linear kernel function on
the data of each client to consider their pairwise similarities.
Note that, corresponding linear kernels are not required to
compute explicitly, preventing from introducing the extra
computation complexity. To solve the proposed method, we
propose an optimization procedure of linear complexity to the
number of data samples. Nevertheless, we conduct extensive
experiments on seven popular benchmark datasets and the
results well support its effectiveness, computation efficiency
and communication efficiency over the competing solutions.
Overall, the contributions can be summarized as follows:

1) To the first attempt, we propose to approximate the
data representation, i.e. the bottleneck of information
integration in federated multi-view clustering, with a
pseudo-label vector and a centroid matrix and transmit
them between the clients and the server, significantly
reducing the communication overhead.

2) We develop a communication-efficient federated multi-
view clustering framework and instance it by incor-
porating the linear kernel function on data implicitly,
achieving not only a linear computation complexity but
also the leading performance.

3) The proposed method is evaluated on benchmarks.
It not only achieves inspiring results (26.84% accu-
racy improvement on average, 2.9×-2153× computation
speedup and 98.4% communication overhead reduction
at most) compared with existing federated multi-view
clustering methods, but also outperforms the centralized
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multi-view clustering approaches on performance and
computation efficiency.

The rest of the paper is organized as follows. Section
II introduces the closely related researches, while Section
III gives out the problem definition of federated multi-view
clustering formally. Moreover, Section IV presents the pro-
posed communication-efficient federated multi-view clustering
framework and corresponding instance method. Additionally,
the optimization procedure, computation complexity, commu-
nication overhead, convergence and privacy requirement are
also introduced and analyzed simultaneously. Nevertheless,
the experiment settings and results are provided in Section
V. Finally, we make conclusion and present the future work
in Section VI.

II. RELATED WORK

In this section, we briefly introduce the closely related re-
searches, including multi-view clustering and federated multi-
view clustering.

A. Multi-view clustering

With the rapid development of electronic device and infor-
mation technology, increasing amounts of data are collected
from multiple sources or modalities, which is annotated to
multi-view data. During the last decades, multi-view clus-
tering has attracted a large volume of interest in research
communities, since it can group multi-view data effectively
by integrating the complementary information among differ-
ent views [1]–[6], [15]. Mostly, the existing approaches are
derived from classical single-view ones and can be roughly
classified into four categories: multiple kernel clustering [6],
[16], [17], multi-view subspace clustering [4], [5], [18], multi-
view spectral clustering [19]–[22] and multi-view matrix fac-
torization [23], [24]. For example, Liu et al. propose a multiple
kernel clustering algorithm on the basis of kernel k-means
by assuming that the consensus kernel is a weighted kernel
sum of different data views [16]. Zhang et al. develop the
latent multi-view subspace clustering algorithm by seeking the
underlying consensus latent representation of all data views
and simultaneously performing subspace clustering on it [4].

Although the above methods achieve promising results, they
are often of high computation complexity and impractical to
handle large-scale data, especially with limited computation
resources. Therefore, a number of researchers propose to im-
prove their efficiencies by utilizing techniques of linear com-
plexity, such as matrix factorization, anchor graph and neural
network encoding. For instance, Wang et al. directly factorize
each data view into a basis matrix and a data representation
matrix by following the widely-used Non-negative Matrix
Factorization (NMF) and impose a diversity regularization
on the data representations [25]. Kang et al. first learn an
anchor graph with respect to each view and then substitute the
complete graphs in multi-view spectral clustering with them,
successfully achieving linear complexity to the number of data
samples [26]. Yang et al. propose a novel end-to-end deep
multi-view clustering approach through encoding the original
data into latent representations with deep neural networks

and simultaneously incorporating collaborative learning to
fuse their complementary information and promote consistent
cluster structure for a better clustering solution [27].

Apart from the large-scale data setting, other conditions,
such as incomplete data, noisy data and unaligned data, are
also sufficiently explored in research communities [28]–[34].

B. Federated multi-view clustering

Federated multi-view clustering is an emerging learning
paradigm to group the multi-view data distributed across
different clients while preserving their privacies [7]–[12]. In
recent researches, the existing methods assume each data
holder to be an isolated client and always require an inde-
pendent server, i.e. a trusted third-party, when building the
clustering model.

According to the distribution of multi-view data, they can be
roughly categorized into two groups. The first group considers
the consequence where each client holds the data observations
of all views but partial data samples [7], [35], [36], which
is annotated to horizontal federated multi-view clustering for
ease of expression. A representative is the federated multi-
view fuzzy c-means clustering method in [36]. Briefly, each
client independently computes the prototypes on its multi-
view data with the local multi-view fuzzy c-means clustering
technique and sends them to the server. When the server
collects the prototypes from all clients, it aggregates them into
the consensus by projecting to a unified embedding space.
Also, Bárcena et al. do the similar but design a strategy
to alternately execute the object assignment to clusters and
simultaneously update the data centers in a collaborative way
[7].

The other group of methods takes the consumption that each
client holds the data observations of one view but all data
samples [8], [13], [14], [37], which is annotated to vertical
federated multi-view clustering here. It is worth noting that
the proposed CeFMC method belongs to this group whose
details are described in the problem definition of Section III.
In such setting, Yan et al. build different auto-encoders with
heterogeneous graph neural networks on clients to extract
data representations and aggregate them into a global one on
the server [13]. Feng et al. compute the data representations
with matrix tri-factorization on each client and adopt a graph-
based regularization to utilize them on the server [14]. To
deal with large-scale data, some researchers also adopt the
matrix factorization and neural network encoding techniques to
reduce the computation complexity. For example, Huang et al.
factorize each data view into a low-dimensional non-negative
matrix and a local clustering assignment matrix (i.e. the local
data representation) on all clients, achieving linear complexity
[8]. Chen et al. use the fully-connected neural network to
encode data on clients [12], while Yan et al. construct a two-
layer graph neural network as the encoder to generate data
representations [13].

III. PROBLEM DEFINITION

For simplicity and clarity of expression, the table of no-
tations is first provided in Table I. Given the multi-view data
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TABLE I
TABLE OF NOTATIONS.

Notation Meaning

N , V , k the number of data samples, views and classes
Xv the v-th view data
Kv the kernel matrix of the v-th view data
Hv the generated representation of the v-th view data

on the v-th client
yv , Yv the label vector and its one-hot encoding on the

v-th client
Cv the centroid matrix on the v-th client
Hc the reconstructed representation concatenation of

all clients on the server
y, Y the consensus label vector and its one-hot encoding

on the server
λ, β the trade-off parameters of representation approx-

imation and label integration
A(0) the initial value of an arbitrary matrix A

Â, Ā the temporary matrix in computation of an arbi-
trary matrix A

objv , obj the objective values of the v-th client and the server

{X1,X2, · · · ,XV } and V isolated clients {C1, C2, · · · , CV },
this paper considers the consequence where the v-th view
data Xv is distributed on the v-th client Cv . Also, a trusted
third-party is required to group the data into categories by
aggregating the data information from all clients and defined
to be the server S. Assuming the data ID set of each client to
be {I1, I2, · · · , IV }, the complete data setting is considered
as

I1 = I2 = · · · = Iv ̸= ∅. (1)

Since the data of different views are collected and possessed
by different organizations in federated multi-view setting, they
are not aligned with each other in most cases. Before building
the clustering model, we apply the widely explored Private Set
Intersection (PSI) technique [38], [39] by default to achieve
data alignment and also use {X1,X2, · · · ,XV } to denote the
aligned data for simplicity of expression.

In the building of clustering model, the clients are forbidden
from transmitting their raw multi-view data to each other or
the server, while only the encoded data information Dv and
byproducts Bv , such as data representation, hyper-parameter,
data centroid in latent space, etc., are shared. Meanwhile, the
shared data information and by-products should be protected
with encryption by default and we do not discuss this explicitly
in the following. Denoting the model of the v-th client to be
fΘv (·) and

Dv,Bv = fΘv
(Xv), (2)

one may infer the multi-view data via

Xv = fΘ−1
v
(Dv,Bv), (3)

in which fΘ−1
v
(·) is the inverse model, leading to the leakage

of data privacy. Therefore, the model fΘv (·) and data features
of Xv are also expected to keep private, preventing from the
illegal building of fΘ−1

v
(·).

IV. METHODOLOGY

In this section, we first propose the CeFMC framework.
Then, its instance is introduced by incorporating linear kernel
function to consider the data pairwise similarity. Nevertheless,
corresponding optimization procedure is presented. Finally,
its computation complexity, communication overhead, conver-
gence and privacy requirements are analyzed.

A. The proposed framework

Similar to the existing federated multi-view clustering ap-
proaches, the proposed CeFMC framework is shown in Fig. 1.
It is composed of V clients and a unique server, where each
client holds one view of data and the server is responsible
for utilizing the information of all the clients. Accordingly,
four main processes are considered, including representation
generation, representation approximation, label integration and
alternate update.

Representation Generation. Given the v-th view data Xv

of size N ×Dv , client Cv will generate its data representation
Hv of size N × dv . Note that, N , Dv and dv refer to the
sample number, the dimension of the v-th view data and the
dimension of corresponding data representation, respectively.
Commonly, there are two possible approaches, where the first
projects the data explicitly as

Hv = GΘv
(Xv), (4)

in which GΘv (·) is a mapping function parameterized by Θv ,
such as neural networks [12]. Also, the data representation
can be implicitly generated by imposing proper constraints
and being optimized accordingly, i.e.

min
Hv

G(Xv,Hv), s.t. Hv ∈ ∆, (5)

where G represents the constraints and ∆ is the feasible
domain of data representation Hv .

Representation Approximation. Once the data representa-
tions are generated, the existing researches directly transmit
Hv to the server. Instead, the proposed CeFMC framework
approximates it into two parts, including a pseudo-label vector
yv of size N × 1 and a centroid matrix Cv of size c× dv (c
is the number of centroids), via minimizing the following

min
Yv,Cv

ℓv(Hv,YvCv), (6)

where Yv ∈ {0, 1}N×c is the one-hot encoding of yv . In
literature, there are a volume of functions to implement ℓv(·),
such as the L2-norm of their difference. It is worth noting
that each client can select or design its ℓv without considering
the others, increasing flexibility of the CeFMC framework.
Once the immediate variables yv and Cv are obtained, they
are transmitted to the server.

Label Integration. With the received pseudo-label yv and
centroid matrix Cv , server S is supposed to integrate them
for further clustering. Denoting the consensus data label and
centroids to y and C, one can minimize the following

min
y,C

V∑
v=1

ℓS(YvCv,YC). (7)
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Similarly, Y ∈ {0, 1}N×k is the one-hot encoding of label
y and k is the number of clusters. Also, the implementation
of ℓS(·) is the same to that of ℓv(·) in Eq. (6), where the
L2-norm of their difference is the mostly used in literature.
Nevertheless, the server can adopt the feasible ℓS(·) without
considering the clients, increasing flexibility of the CeFMC
framework as well.

Alternate Update. By executing the representation gener-
ation, representation approximation and label integration only
once, the obtained label y is not optimal, since the received yv

and Cv of the v-th client are generated only depending on its
data but lacking the guidance from the integrated information
of server S. Therefore, the CeFMC framework proposes to
send the label y and centroids C back to clients for better
generation of yv and Cv . To execute the above processes
alternately, the CeFMC framework equals to minimizing one
of the following unified objective functions.

min
Θv,Yv,Cv,Y,C

V∑
v=1

[ℓv (GΘv (Xv),YvCv)

+ λℓS(YvCv,YC)] ,

(8)

or

min
Hv,Yv,Cv,Y,C

V∑
v=1

[G(Xv,Hv) + λℓv(Hv,YvCv)

+ βℓS(YvCv,YC)] ,

(9)

where λ and β are trade-off parameters and the former objec-
tive is used when generating the data representations explicitly
with Eq. (4), while the latter is adopted when generating the
data representations implicitly with Eq. (5).

B. The example method

In order to group the distributed multi-view data in practice,
the proposed CeFMC framework is implemented by instancing
the four components, including the representation generation,
representation approximation, label integration and alternate
update in the following.

To deal with large-scale data, existing federated multi-view
clustering approaches adopt the matrix factorization and neural
network encoding techniques to generate the data representa-
tions on clients, reducing the computation complexity. Besides,
anchor graph is another feasible solution which is widely
explored in the multi-view clustering literature. However, these

two techniques fail to utilize the pairwise similarity infor-
mation of data samples sufficiently, preventing from further
improvement of clustering performance. To address this issue,
we construct a linear kernel matrix implicitly on each client
and compute corresponding data representation subsequently,
as shown in Fig. 2. In specific, with given the v-th view data
Xv , the linear kernel can be represented with

Kv = XvX
⊤
v , (10)

where Kv is of size N × N and its (i, j)-th element is
the similarity between the i-th sample and the j-th sample.
Here, the linear kernel function is adopted for achieving
linear computation complexity in optimization. Also, other
kernel functions, such as Gaussian kernel, are compatible but
higher computation complexity is required simultaneously. By
following the kernel alignment theory [40], we can align kernel
matrix Kv with data representation Hv by maximizing

max
Hv

< Kv, HvH
⊤
v >

< Kv, Kv > < HvH⊤
v , HvH⊤

v >
, (11)

where < ·, · > refers to the inner-product of two matrices. As
for the feasible domain of data representation Hv , we expect
each of its columns to be discriminative to the others, which
can be formulated by setting it orthogonal [41], i.e.

H⊤
v Hv = Ik. (12)

For simplicity, we set the dimensions of {Hv}Vv=1 to N × k
universally. With introducing Eq. (12) into Eq. (11), the data
representation can be generated by maximizing

max
Hv

Tr(KvHvH
⊤
v ), s.t. H⊤

v Hv = Ik. (13)

which is the instance of Eq. (5) by incorporating the linear
kernel function to consider the pairwise similarities among
data samples.

As for the approximation of data representation, we propose
to instance Eq. (6) by minimizing the difference between Hv

and YvCv with L2-norm and obtain

min
Yv

∥Hv −YvCv∥2F . (14)

Note that, centroid matrix Cv is fixed to the initial value
and does not participate in the subsequent optimization for
a smaller computation overhead. In addition, the size of label
one-hot encoding Yv is set to N × k with respect to all data
views and centroid matrix Cv is of size k × k. Since data
representation Hv is required to be orthogonal in Eq. (12),
the above formulation can be transformed to

max
Yv

Tr(H⊤
v YvCv). (15)

Nevertheless, when received all pseudo-labels and centroids
from clients, the server first recovers the corresponding data
representations by simply multiplying them. Subsequently, the
obtained data representations are concatenated into a unified
one and the multi-view information is aggregated by minimiz-
ing its difference from the consensus data representation. To
be concrete, the formulation can be written as

min
Y,C

∥Hc −YC∥2F , s.t. CC⊤ = Ik. (16)
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in which Hc is the horizontal concatenation, i.e.

Hc = [Y1C1,Y2C2, · · · ,YV CV ]. (17)

At the same time, consensus label one-hot encoding Y and
centroid matrix C are of size N×k and k×(V k), respectively.
Similar to Eq. (14), the above formulation can be transformed
to

max
Y,C

Tr(H⊤
c YC), s.t. CC⊤ = Ik. (18)

To achieve a promising consensus label y, we can execute
the above processes alternately by unifying Eq. (13), (15)
and (18). Consequently, the CeFMC framework of Eq. (9) is
instanced into

max
Hv,Yv,Y,C

V∑
v=1

[
Tr(KvHvH

⊤
v ) + λTr(H⊤

v YvCv)
]

+ βTr(H⊤
c YC)

s.t. H⊤
v Hv = Ik, CC⊤ = Ik,Yv ∈ {0, 1}N×k,

Y ∈ {0, 1}N×k,
(19)

in which λ and β are the trade-off parameters of representation
approximation and label integration. Note that, it is recom-
mended setting them to the same value for better practicality
and more details can be found in Section V-G.

C. Optimization

To solve the objective in Eq. (19), we design an alternate
optimization procedure of linear complexity. Specifically, it
can be separated into three parts: variable initialization, client
computation and server computation. Meanwhile, the complete
optimization procedure is summarized in Alg. 2.

1) Variable initialization: At the beginning of optimization,
the variables are supposed to be initialized. For data represen-
tation H

(0)
v on the v-th client, it is set to the left singular

vectors of data Xv corresponding to the k largest singular
values,

H(0)
v = U(:, 1 : k), (20)

with UΣV⊤ = Xv being the Singular Vector Decomposition
(SVD), meeting the orthogonal requirement of data representa-
tions. Then, the obtained data representations of all clients are
sent to the server and concatenated horizontally to a unified
one, obtaining

H(0)
c = [H

(0)
1 ,H

(0)
2 , · · · ,H(0)

V ]. (21)

Next, the server performs the widely used k-means on H
(0)
c

to compute the consensus label Y(0) and clustering centroid
Ĉ(0). In this way, the consensus centroid matrix C(0) is
obtained by orthogonalizing Ĉ(0) with

C(0) = U(0)V(0)⊤, (22)

where U(0)Σ(0)V(0)⊤ = Ĉ(0) is the SVD correspondingly.
With segmenting C0 into V parts, i.e.

[C̄
(0)
1 , C̄

(0)
2 , · · · , C̄(0)

V ] = C(0), (23)

Algorithm 1 Optimization of Hv-subproblem
Input: data observation Xv , centroid matrix Cv and initial
data representation Hv

Output: data representation Hv

1: ensure HvH
⊤
v = Ik;

2: repeat
3: compute M = XvX

⊤
v Hv + λYvCv;

4: perform SVD on M, i.e. UΣV⊤ = M;
5: update Hv = UV⊤;
6: until convergent

and transmitting them to each client respectively, the pseudo-
labels and centroid matrices of the clients can be set to

Y
(0)
1 = Y

(0)
2 = · · · = Y

(0)
V = Y(0),

C
(0)
1 = C̄

(0)
1 ,C

(0)
2 = C̄

(0)
2 , · · · ,C(0)

V = C̄
(0)
V .

(24)

2) Client computation: In the v-th client, data representa-
tion Hv and pseudo-label Yv are optimized alternately, while
the local objective value is computed accordingly.
Hv-subproblem. With fixing pseudo-label Yv , the objec-

tive of Eq. (19) can be written to

max
Hv

Tr(H⊤
v XvX

⊤
v Hv) + λTr(H⊤

v YvCv)

s.t. H⊤
v Hv = Ik

(25)

where Kv is replaced with XvX
⊤
v , since it is not required

to be computed explicitly. It can be observed that Eq. (25)
is a quadratic optimization problem on the Stiefel manifold
[42] and can be solved by Alg. 1 in linear complexity to the
number of data samples.
Yv-subproblem. With fixing data representation Hv , the

objective of Eq. (19) can be written to

max
Yv

Tr(H⊤
v YvCv) + Tr(H⊤

c YC̄v), (26)

in which C̄v is the v-th horizontal segment of consensus
centroid matrix C, comprehensively shown as

[C̄1, C̄2, · · · , C̄V ] = C. (27)

Nevertheless, by introducing Eq. (17), Eq. (26) is transformed
to

max
Yv

Tr(Y⊤
v S), (28)

with S = HvC
⊤
v +YC̄vC

⊤
v . Denoting Yv(i, :) and S(i, :) to

the i-th row of Yv and S, the solution is

Yv(i, :) = ej , s.t. j = argmaxS(i, :), (29)

where ej represents the one-hot encoding of constant j.
Local objective. To check if the alternate optimization

procedure converges, the v-th client is expected to compute
its local objective with the obtained Hv and Yv as

objv = Tr(H⊤
v XvX

⊤
v Hv) + λTr(H⊤

v YvCv), (30)

which is sent to the server subsequently.
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Algorithm 2 Optimization of the CeFMC method
Input: multi-view data {Xv}Vv=1, cluster number k, trade-off
parameter λ
Output: cluster assignment y
- - - - - - - - - - - - - - - v-th Client Cv - - - - - - - - - - - - - -

1: # Varible initialization
2: initialize H

(0)
v with Eq. (20);

3: send H
(0)
v to Server S;

4: receive y(0) and C̄
(0)
v from Server S;

5: initialize Y
(0)
v and C

(0)
v ;

6: # Client computation
7: t = 1;
8: while not convergent do
9: update data representation Hv with Alg. 1;

10: update pseudo-label Yv with Eq. (29);
11: compute the local objective value objtv in Eq. (30);
12: send yv and objtv to Server S;
13: receive y and C̄v from Server S;
14: t = t+ 1;
15: end while
- - - - - - - - - - - - - - - - Server S - - - - - - - - - - - - - - - - -

1: # Varible initialization
2: receive {H(0)

v }Vv=1 from all clients;
3: compute Y(0) and Ĉ(0) by k-means;
4: initialize C(0) with Eq. (22);
5: send y(0) and C̄

(0)
v to clients;

6: # Server computation
7: t = 1;
8: while not convergent do
9: receive {yv}Vv=1 and {objtv}Vv=1 from clients;

10: update consensus label Y with Eq. (32);
11: update consensus centroids C with Eq. (34);
12: send y and {C̄v}Vv=1 to clients;
13: compute the overall objective value objt with Eq. (35);
14: check the convergence condition:

objt − objt−1/objt ≤ δ
15: t = t+ 1;
16: end while
17: output the cluster assignment y;

3) Server computation: In the server, consensus label one-
hot encoding Y and centroid matrix C are optimized alter-
nately, while the overall objective value is computed accord-
ingly.

Y-subproblem. With fixing consensus centroid matrix C,
the objective of Eq. (19) can be written to

max
Y

Tr(Y⊤Q), (31)

with Q = HcC
⊤. Similar to Eq. (28), we can denote Y(i, :)

and Q(i, :) are the i-th rows of Y and Q, respectively, and
the solution should be

Y(i, :) = ej , s.t. j = argmaxQ(i, :), (32)

where ej represents the one-hot encoding of constant j.

C-subproblem. By fixing consensus label Y, the objective
of Eq. (19) can be written to

max
Y

Tr(CP), s.t. CC⊤ = Ik, (33)

with P = H⊤
c Y. According to Theorem 1 of [43], the solution

of Eq. (33) can be obtained by

C = VU⊤, (34)

in which U and V are the left and right singular vectors of
P with the SVD being UΣV⊤ = P.

Overall objective. To check if the alternate optimization
procedure converges, the server is supposed to compute the
overall objective with the fixed Y, C and the received
{objv}Vv=1 via

obj = βTr(H⊤
c YC) +

V∑
v=1

objv. (35)

D. Computation complexity

The computation complexity of the CeFMC method is
analyzed as follows. Primarily, it is well known that SVD on
a matrix of size n×m takes O(nm2).

Variable initialization. {H(0)
v }Vv=1 is computed with V

independent SVD, requiring a O((
∑V

v=1 Dv)N) complexity,
while Y(0) and Ĉ(0) are computed with k-means, which is of
O(V k2N) complexity. Also, the subsequent computation of
C(0) with SVD requires a O(V 2k2) complexity.

Client computation. In the v-th client, Hv is calculated via
Alg. 1. Here, XvX

⊤
v Hv equals to Xv(X

⊤
v Hv) of O(kDvN)

complexity, while YvCv can be efficiently computed by index
operation, i.e. Cv(yv, :) in which yv is the corresponding label
vector of one-hot encoding Yv . In this way, the computation
of M only requires O(kDvN). Also, the SVD on M is of
O(k2N) complexity. Assuming Alg. 1 needs t1 iterations to
converge, the computation complexity of Hv is O(t1kDvN +
t1k

2N). Nevertheless, the complexity of Yv is mainly on the
computation of S which requires a O(k2N + k3) complexity
(YC̄vC

⊤
v equals to Y(C̄vC

⊤
v ) with the index operation).

Moreover, in the calculation of objv , H⊤
v XvX

⊤
v Hv can be

computed by (H⊤
v Xv)(X

⊤
v Hv) with a O(kDvN + k2Dv)

complexity, while H⊤
v YvCv with a O(k2N + k2Dv) com-

plexity. Taking V clients into account, the overall complexity
of client computation is of O(t1k(

∑V
v=1 Dv)N + t1V k2N).

Server computation. To compute Y, the complexity is
mainly on the calculation of Q in which Hc is constructed by
Eq. (17) with index and concatenation operators and HcC

⊤

requires a O(V k2N). Meanwhile, to compute C, P can be
calculated with the index and sum operators and the SVD on
P requires a O(V k3) complexity. Nevertheless, to compute
the overall objective, H⊤

c YC is of O(V k2N) complexity.
In summary, assuming that the optimization procedure

converges at the t-th iteration, corresponding complexity is
O(tt1k(

∑V
v=1 Dv)N + tt1V k2N), reducing to O(N), i.e.

linear to the number of data samples.
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E. Communication overhead

Different from the centralized learning paradigm, federated
learning is often limited by the bottleneck of transmitting data
among clients and server when building the target model,
since the network availability, stability and bandwidth are hard
guaranteed in most cases. Therefore, a low communication
overhead always induces to the desired practicality.

To analyze the communication overhead1 of the CeFMC
method (Alg. 2), we can separate it into two stages, i.e.
initialization and clustering. In the former, the v-th client
needs to send data representation H

(0)
v to the server, requiring

transmitting kN floats, while receives y(0)
v and C̄

(0)
v , requiring

transmitting N uints and k2 floats. In the latter, assuming
the optimization procedure converges at the t-th iteration,
the v-th client needs to send yv and objtv to the server,
requiring transmitting tN uints and t floats, while receive y
and C̄v , requiring transmitting tN uints and tk2 floats. To be
summarized, the communication overhead of CeFMC method
is (k+1)N+(t+1)k2+ t floats and (2t+1)N uints between
each client and the server. In literature, the existing feder-
ated multi-view clustering methods directly transmit the data
representations between client and server, requiring at least
2tkN floats. In comparison, the proposed CeFMC method
saves multiple times of communication overheads, making it
more practical in real-world applications. By the way, please
find corresponding empirical results in Section V-D.

F. Convergence

To solve the maximization problem of Eq. (19), an alternate
optimization procedure is proposed in Alg. 2 and is convergent
with theoretical guarantee.

For simplicity of expression, the objective can be annotated
to

max
Hv,Yv,Y,C

L ({Hv}Vv=1, {Yv}Vv=1,Y,C). (36)

Also, we denote L({H(t)
v }Vv=1, {Y

(t)
v }Vv=1,Y

(t),C(t)) to the
objective value at the t-th iteration. In such setting, the
optimization procedure proposes to alternately optimize one
of the variables while keeping the others fixed at the t + 1
iteration, inducing to

L ({H(t)
v }Vv=1, {Y(t)

v }Vv=1,Y
(t),C(t))

≤ L ({H(t+1)
v }Vv=1, {Y(t)

v }Vv=1,Y
(t),C(t))

· · ·
≤ L ({H(t+1)

v }Vv=1, {Y(t+1)
v }Vv=1,Y

(t+1),C(t+1)),

(37)

which can be simplified to L(t) ≤ L(t+1) by denoting L(t)

to the objective value at the end of t-th iteration. Mean-
while, the objective in Eq. (19) can be separated into three
parts, i.e.

∑V
v=1 Tr(KvHvH

⊤
v ),

∑V
v=1 Tr(H

⊤
v YvCv) and

Tr(H⊤
c YC), which are analyzed as follows:

1) Since {Kv}Vv=1 are fixed for the given multi-view data,
we assume each of their elements no bigger than a
constant δ. Meanwhile, due to H⊤

v Hv = Ik, it holds

1In the following, float refers to the floating point number, while uint to
the unsigned integer for brevity.

that Hv(:, j)
⊤Hv(:, j) = 1, in which Hv(:, j) represents

the j-th column of matrix Hv . This illustrates that each
element of Hv is in range [−1, 1]. Thus,
V∑

v=1

Tr(KvHvH
⊤
v ) =

V∑
v=1

Tr
[
(H⊤

v Kv)Hv

]
≤ V kN2δ.

(38)
2) It can be seen from the first point that each element

of Hv is in range [−1, 1]. Similarly, each element of
Cv is also in range [−1, 1]. Combining the constraint
Yv ∈ {0, 1}N×k, the following holds that

V∑
v=1

Tr(H⊤
v YvCv) ≤ V k2. (39)

3) Since Hc = [Y1C1,Y2C2, · · · ,YV CV ], each element
of Hc is in range [−1, 1]. Also, CC⊤ = Ik, inducing
that each element of C is also in range [−1, 1]. There-
fore,

Tr(H⊤
c YC) ≤ V k2. (40)

By utilizing the above equations, the objective value of Eq.
(19) is no bigger than V kN2δ + (λ+ β)V k2.

To be summarized, the objective value monotonically in-
creases in iteration and is upper bounded, therefore is conver-
gent theoretically.

G. Privacy requirement

Since the proposed method is an instance of the proposed
framework, its privacy requirement follows the similar rules in
Section III. Concretely, in the building of clustering model, the
clients are forbidden from transmitting their raw multi-view
data Xv to each other or the server, while only the pseudo-
label yv and centroid matrix Cv are shared. Meanwhile, the
shared pseudo-label and centroid matrix should be protected
with encryption by default. Also, one may infer data privacies
illegally by building the mapping that

Xv = fΘ−1
v
(Hv), (41)

where fΘ−1
v
(·) is the inverse model. Therefore, the data

features of Xv are also expected to keep private. In addition,
the generated representation Hv is recommended to do so but
not compulsively.

V. EXPERIMENT

In this section, we first introduce the experiment setting,
then provide and analyze the results of CeFMC method from
four aspects, including effectiveness, computation efficiency,
communication efficiency and convergence.

A. Experiment setting

In experiment, the proposed CeFMC method is tested on
seven popular benchmark datasets of Table II. Also, they are
briefly introduced as follows:

1) ORL2 [44]. It collects 400 face images of 40 distinct
subjects. In experiment, the images are resized to 48×48

2https://www.cl.cam.ac.uk/research/dtg/attarchive/facedatabase.html
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TABLE II
DETAILS OF THE USED BENCHMARK DATASETS.

Dataset
Number of

Samples Views Clusters

ORL 400 3 40
Flower17 1360 7 17
HW 2000 6 10
BDGP 2500 3 5
RGBD 10335 2 45
DryBean 13611 2 7
AwA 30475 6 50

and three types of features are extracted, including
the 4096-D intensity, 3304-D LBP and 6750-D Gabor
features.

2) Flower173 [45]. It is a flower dataset of 17 categories
with 80 images for each class. Seven features are
extracted, including 5376-D Color Histogram, 512-D
GIST, 5376-D HOG (2×2), 5376-D HOG (3×3), 1239-
D LBP, 5376-D SIFT and 5376-D SSIM features.

3) HW4 [46]. It is composed of 2,000 data points from 0
to 9 ten digit classes with each of 200 data points. In
experiment, six features are adopted, i.e. 216-D profile
correlations, 76-D Fourier coefficients of the character
shapes, 64-D Karhunen-Love coefficients, 6-D morpho-
logical features, 240-D pixel averages in 2×3 windows
and 47-D Zernike moments.

4) BDGP5 [47]. It collects 2500 drosophila embryo images
of 5 categories. In experiment, SIFT features from three
different perspectives, i.e. lateral, dorsal and ventral, are
extracted with the dimensions to be 1000-D, 500-D and
250-D, respectively.

5) SUNRGBD6 [48] (abbr. RGBD). It consists of 10335
RGB and depth image pairs for recognition of both ob-
jects and room layouts. In experiment, two data features
of both 4096-D are extracted with deep neural networks
on the RGB and depth images, respectively.

6) DryBean7 [49]. It collects 13611 grain images of 7 dif-
ferent registered dry beans taken with a high-resolution
camera. In experiment, two features, i.e. 12-D dimen-
sions and 4-D shape forms, are extracted from the
images.

7) AwA8 [50] It contains 30475 images of 50 animal
classes with six extracted features, including 2688-D
Color Histogram, 2000-D local self-similarity, 252-D
PHOG, 2000-D SIFT, 2000-D color SIFT and 2000-D
SURF features.

Nevertheless, the proposed CeFMC method is empirically
compared with existing federated multi-view clustering meth-
ods, including

3https://www.robots.ox.ac.uk/∼vgg/data/flowers/17/
4https://archive.ics.uci.edu/ml/datasets/Multiple+Features/
5https://www.fruitfly.org/
6http://rgbd.cs.princeton.edu/
7https://archive.ics.uci.edu/dataset/602/dry+bean+dataset
8https://cvml.ist.ac.at/AwA/

1) FedMVL [8]. It proposes a novel federated multi-view
clustering framework by performing orthogonal matrix
factorization on each client and incorporating the coef-
ficient matrices on the server.

2) FedCMv and FedFCMv [7]. They are, respectively,
developed by extending the c-means and fuzzy c-means
clustering algorithms in the federated learning setting
where the data are vertically partitioned on clients.

Note that, only these three methods are considered in exper-
iment, since federated multi-view clustering is an emerging
research interest and they are the only available and runnable
solutions after detailed search and debugging. Meanwhile, the
other methods have the following limitations, preventing them
from comparison in exepriments.

1) FMVC-IMK [14] and FMVFCMSP [9]. Their codes
are not released publicly. In addition, it is unfair to
compare CeFMC with FMVC-IMK, since the former
is of linear complexity to sample number while the
latter of square complexity. Nevertheless, FMVFCMSP
inadvertently uses the data labels when incorporating
tensor Schatten-p norm and thus violates the unsuper-
vised setting of clustering, which is discussed in [51]
thoroughly.

2) FIM-GNNs [13], FedDMVC [12] and FMCSC [11].
They consider different data settings from the pro-
posed CeFMC method. Specifically, FIM-GNNs and
FedDMVC focus on the incomplete setting of distributed
multi-view data, while FMCSC concentrates on the
consequence where some of clients hold single-view
data and the others hold multi-view data. Also, the code
of FIM-GNNs is not available publicly.

3) FedMVFPC [36]. Different from the CeFMC setting
where each client holds the data observations of one
view but all data samples, FedMVFPC considers the
setting in which each client holds the data observations
of all views but partial data samples.

Moreover, to sufficiently illustrate the superiority of CeFMC,
we also compare CeFMC with nine more competitive cen-
tralized large-scale multi-view clustering approaches of linear
complexity, i.e.

1) MNMF [52]. It computes the soft-label matrices on each
view with None-negative Matrix Factorization (NMF)
and pushes them toward a common consensus in the
iterative optimization procedure instead of fixing it di-
rectly.

2) RMKC [53]. It proposes to remove the effect of data
outliers by incorporating the structured sparsity-inducing
L2,1-norm and can handle with large-scale data by
designing the non-smooth norm based loss function with
proved convergence.

3) BMVC [3]. It combines the compact discrete represen-
tation learning and binary clustering structure learning
in a joint framework by encoding the multi-view image
descriptors into a compact common binary code space.

4) LMSuC [26]. By introducing the anchor graph tech-
nique, it first learns a smaller graph for each view and
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integrates them with spectral clustering, improving the
clustering efficiency significantly.

5) OPMC [43]. It proposes a matrix tri-factorization
method with the consensus discrete label matrix on each
data view to integrate the complementary information.

6) EOMSC [54]. It combines anchor learning and graph
construction into a unified framework and imposes a
graph connectivity constraint to produce the discrete
label directly.

7) TBGL [55]. It proposes a variance based decorrelation
anchor selection strategy for bipartite construction and
exploits the similarity of inter-view by minimizing the
tensor Schatten p-norm.

8) FastMICE [56]. It proposes a fast multi-view clustering
approach by capturing the versatile view-wise relation-
ships and designing the hybrid early-late fusion strategy
to enable efficient multi-stage data information fusion.

9) UDBGL [57]. It proposes an efficient multi-view clus-
tering approach via learning the unified and discrete
bipartite graphs and develops an efficient optimization
algorithm of linear complexity accordingly.

To produce the experiment results, we directly run the codes
publicly available at the authors’ websites without further re-
vision for reproduction. In addition, we grid-search parameters
in the range recommended in corresponding papers and report
the best. So does the proposed CeFMC method by setting
parameter λ and β in [2−10, 2−9, · · · 210]. Note that, we set
λ = β by default for better practicality and more details
are provided in Section V-G. By following the multi-view
clustering literature, three widely-used metrics, i.e. Accuracy
(ACC), Normalized Mutual Information (NMI) and Purity, are
adopted to evaluate the clustering performance. Furthermore,
the methods are executed multiple times to remove random-
ness and their averages with standard variance are presented.
Additionally, OT, abbr. Out of Time, indicates that the result
is not obtained before the maximal time limit in the following
tables.

B. Effectiveness

To validate effectiveness of the proposed CeFMC, we com-
pare it with the existing federated multi-view clustering meth-
ods and corresponding results are presented in Table III. It is
obvious that CeFMC outperforms the others by large margins.
For instance, it increases the accuracies by 08.20%, 19.78%,
42.94%, 31.53%, 24.89% and 01.72% on ORL, Flower17,
HW, BDGP, DryBean ad AwA datasets, respectively. Although
it achieves relatively worse performances on RGBD dataset,
only slight decreases are observed, i.e. 00.89% ACC, 06.19%
NMI and 01.65% purity. At the same time, the FedMVL and
FedFCMv methods achieve similar results. In contrast, the
FedCMv method obtains the worst performances. Specifically,
it only achieves 20.00% ACC, 00.00% NMI and 20.00% purity
on BDGP, degrading to random guess, since BDGP is of
5 clusters according to the ground truth. By averaging the
performances on all datasets, we can see that CeFMC obtains
26.84% ACC, 23.06% NMI and 25.29% purity increases.

TABLE III
PERFORMANCE COMPARISON BETWEEN CEFMC AND EXISTING

FEDERATED MULTI-VIEW CLUSTERING APPROACHES.

Dataset FedCMv FedFCMv FedMVL CeFMC Gap

ACC
ORL 08.55± 0.9 25.75± 0.0 64.45± 4.5 72.65± 3.9 08.20↑
Flower17 07.69± 1.7 12.94± 0.0 14.57± 0.5 34.35± 0.9 19.78↑
HW 24.32± 8.6 51.53± 2.2 21.05± 1.9 94.47± 0.4 42.94↑
BDGP 20.00± 0.0 20.89± 0.2 22.65± 0.3 54.18± 6.3 31.53↑
RGBD 21.29± 1.4 07.78± 0.1 18.94± 0.4 20.40± 0.9 00.89↓
DryBean 41.75± 0.0 55.73± 1.2 32.07± 3.1 80.62± 1.5 24.89↑
AwA 08.29± 0.2 04.16± 0.3 03.39± 0.0 10.01± 0.2 01.72↑
Average 18.84 25.54 25.30 52.38 26.84↑

NMI
ORL 29.71± 1.4 49.34± 0.0 79.51± 2.2 85.62± 1.9 06.11↑
Flower17 01.91± 1.7 07.96± 0.0 08.07± 0.6 33.47± 1.3 25.40↑
HW 31.79± 16.8 56.76± 0.3 07.54± 1.5 88.32± 0.5 31.56↑
BDGP 00.00± 0.0 00.50± 0.1 00.33± 0.0 29.14± 5.2 28.64↑
RGBD 27.71± 0.8 11.48± 0.0 22.92± 0.5 21.52± 0.3 06.19↓
DryBean 45.72± 0.0 50.46± 1.5 16.43± 2.4 69.56± 2.6 19.10↑
AwA 09.76± 0.1 01.39± 1.4 01.04± 0.0 11.62± 0.4 01.86↑
Average 20.94 25.41 19.41 48.47 23.06↑

Purity
ORL 08.55± 0.9 27.50± 0.0 68.85± 3.9 76.35± 3.2 07.50↑
Flower17 07.69± 1.7 13.68± 0.0 15.53± 0.4 35.69± 1.1 20.16↑
HW 24.32± 8.6 55.89± 2.1 21.86± 1.7 94.47± 0.4 38.58↑
BDGP 20.00± 0.0 20.94± 0.2 22.86± 0.3 54.52± 6.2 31.66↑
RGBD 39.10± 1.1 21.31± 0.2 38.28± 0.7 37.45± 0.5 01.65↓
DryBean 41.75± 0.0 57.15± 1.5 41.85± 3.4 80.62± 1.5 23.47↑
AwA 10.10± 0.1 04.78± 1.0 04.49± 0.0 11.66± 0.3 01.56↑
Average 21.64 28.75 30.53 55.82 25.29↑

* The Gap column refers to performance increase or decrease of CeFMC
to the best of the others.

Apart from federated multi-view clustering methods, we
also compare the proposed CeFMC with the centralized multi-
view clustering approaches in experiment and present the
results in Table IV. Specifically, it achieves almost the best
or second-best performances on all datasets, except for the
NMIs on BDGP, RGBD and AwA and the purity on RGBD.
Also, it should be noted that the TBGL method cannot
compute the clustering assignments on BDGP, RGBD and
AwA datasets, while CeFMC not only can do this, but also
achieves satisfactory performances. Meanwhile, we average
the results of each approach on all datasets. It can be observed
that the proposed CeFMC method achieves the best perfor-
mance and improves the ACC, NMI and purity by 05.24%,
02.26% and 03.51% over the second-best, respectively. Note
that, the centralized multi-view clustering methods are more
conductive to achieving better results, since they are of no
need to consider the consequence of transmitting information
between the clients and server. Therefore, the aforementioned
observations validate the effectiveness of CeFMC to a large
extent.

In summary, the proposed CeFMC method not only outper-
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TABLE IV
PERFORMANCE COMPARISON BETWEEN CEFMC AND CENTRALIZED MULTI-VIEW CLUSTERING APPROACHES.

Dataset MNMF RMKC BMVC LMSuC OPMC EOMSC TBGL FastMICE UDBGL CeFMC

ACC
ORL 66.95± 2.7 57.35± 3.5 57.25± 0.0 59.00± 0.0 58.95± 3.5 62.25± 0.0 57.05± 1.3 70.35± 3.1 56.50± 0.0 72.65± 3.9

Flower17 35.72± 2.2 23.31± 2.5 27.57± 0.0 31.40± 0.0 29.38± 0.6 28.09± 0.0 11.16± 1.0 28.51± 0.7 32.13± 0.0 34.35± 0.9

HW 65.12± 2.3 70.43± 3.2 86.40± 0.0 92.10± 0.0 81.48± 7.8 76.00± 0.0 75.64± 1.9 88.25± 4.4 80.95± 0.0 94.47± 0.4

BDGP 48.59± 0.0 49.63± 5.1 32.00± 0.0 45.00± 0.0 50.70± 0.2 42.08± 0.0 OT 51.61± 1.4 39.44± 0.0 54.18± 6.3

RGBD 18.62± 0.8 17.89± 0.8 16.39± 0.0 17.71± 0.0 19.40± 0.7 23.70± 0.0 OT 18.43± 0.9 20.06± 0.0 20.40± 0.9

DryBean 36.09± 4.3 55.24± 4.6 50.45± 0.0 70.60± 0.0 47.63± 0.1 60.23± 0.0 32.84± 4.2 64.03± 1.9 82.93± 0.0 80.62± 1.5

AwA 06.77± 0.1 09.01± 0.2 10.45± 0.0 08.18± 0.0 09.40± 0.2 08.72± 0.0 OT 08.79± 0.2 08.18± 0.0 10.01± 0.2

Average 39.69 40.41 40.07 46.28 42.42 43.01 / 47.14 45.74 52.38

NMI
ORL 81.11± 1.7 75.53± 1.1 72.19± 0.0 78.91± 0.0 76.32± 2.3 88.15± 0.0 70.15± 1.2 84.17± 1.1 73.80± 0.0 85.62± 1.9

Flower17 34.54± 1.5 20.87± 2.0 24.88± 0.0 29.34± 0.0 29.05± 0.5 26.53± 0.0 05.78± 1.0 28.14± 0.7 28.83± 0.0 33.47± 1.3

HW 61.48± 2.4 70.71± 3.0 84.03± 0.0 86.49± 0.0 77.94± 3.7 82.08± 0.0 70.39± 1.6 88.04± 2.9 78.83± 0.0 88.32± 0.5

BDGP 32.50± 0.0 25.69± 3.1 08.20± 0.0 24.57± 0.0 35.42± 0.2 14.59± 0.0 OT 33.25± 1.5 15.29± 0.0 29.14± 5.2

RGBD 23.37± 0.3 23.84± 0.4 19.22± 0.0 20.71± 0.0 25.53± 0.2 22.49± 0.0 OT 23.13± 0.9 19.82± 0.0 21.52± 0.3

DryBean 20.49± 4.8 47.16± 2.0 37.30± 0.0 57.00± 0.0 40.33± 0.0 53.23± 0.0 14.57± 3.8 56.19± 1.4 66.47± 0.0 69.56± 2.6

AwA 07.62± 0.1 11.16± 0.3 12.30± 0.0 09.03± 0.0 11.95± 0.2 10.10± 0.0 OT 10.56± 0.2 08.47± 0.0 11.62± 0.4

Average 37.30 39.28 36.88 43.72 42.36 42.45 / 46.21 41.64 48.47

Purity
ORL 72.10± 2.4 61.20± 2.6 60.00± 0.0 65.50± 0.0 62.55± 3.6 92.50± 0.0 63.45± 1.3 73.95± 2.6 62.00± 0.0 76.35± 3.2

Flower17 36.87± 2.3 24.68± 2.5 28.90± 0.0 33.16± 0.0 30.97± 0.3 28.75± 0.0 11.59± 1.0 30.28± 0.5 32.28± 0.0 35.69± 1.1

HW 67.69± 1.0 73.99± 2.9 86.40± 0.0 92.10± 0.0 82.82± 6.5 76.20± 0.0 76.00± 1.7 88.78± 4.2 80.95± 0.0 94.47± 0.4

BDGP 52.10± 0.0 50.57± 5.1 33.88± 0.0 45.96± 0.0 53.26± 0.2 42.08± 0.0 OT 52.91± 1.8 40.24± 0.0 54.52± 6.2

RGBD 38.78± 0.9 38.21± 0.8 33.28± 0.0 35.42± 0.0 40.29± 0.5 33.33± 0.0 OT 38.22± 1.0 28.12± 0.0 37.45± 0.5

DryBean 42.30± 4.2 59.56± 1.9 57.17± 0.0 72.00± 0.0 56.66± 0.2 61.65± 0.0 33.57± 4.5 71.07± 2.1 82.93± 0.0 80.62± 1.5

AwA 08.59± 0.1 11.06± 0.3 12.19± 0.0 10.03± 0.0 11.49± 0.2 09.62± 0.0 OT 10.93± 0.2 09.41± 0.0 11.66± 0.3

Average 45.49 45.61 44.55 50.60 48.29 49.16 / 52.31 47.99 55.82
* OT, abbr. Out of Time, indicates that the result is not obtained before the time limit.

TABLE V
TIME CONSUMPTION (IN SECONDS) COMPARISON BETWEEN CEFMC AND

EXISTING FEDERATED MULTI-VIEW CLUSTERING APPROACHES.

Dataset FedCMv FedFCMv FedMVL CeFMC Speedup

ORL 1273.7 86.4 31.1 5.2 6.0×-244.9×

Flower17 2299.4 241.0 81.0 27.6 2.9×- 83.3×

HW 75.0 9.9 41.1 0.2 49.5×-375.0×

BDGP 24.2 13.3 48.3 1.4 9.5×- 34.5×

RGBD 43204.7 1465.1 1837.1 71.8 20.4×-601.7×

DryBean 24.9 10.8 3444.8 1.6 6.8×- 2153×

AwA 198724.3 6619.2 34435.0 690.9 9.6×-287.6×

Avg. order 3.7 2.3 3.0 1.0 /
* The Speedup column presents the acceleration times of CeFMC to

the others, while the Order row is the average order of each method
on all datasets.

forms existing federated multi-view clustering approaches by
large margins, but also obtains better performances over the
centralized multi-view clustering approaches, well illustrating
its effectiveness.

C. Computation efficiency

As analyzed in Section IV-D, the proposed CeFMC method
is of linear complexity to the number of data samples. In the
following, we validate its efficiency empirically by compar-
ing with existing federated multi-view clustering approaches.
Corresponding time consumptions are collected in Table V. It
can be observed that the CeFMC method takes the least time
to compute the clustering results, while FedFCMv consumes
the second least time on all datasets. In statistics, we sort the
time consumptions of all methods on each dataset in ascending
order and present their averages at the bottom, where the
CeFMC takes the first place, following by FedFCMv, FedMVL
and FedCMv subsequently. Meanwhile, the speedup ranges
are calculated by dividing the minimal and maximal values of
the competing methods with those of CeFMC. It can be seen
that the proposed CeFMC accelerates the clustering process by
2.9 times at least and 2153 times at most. These observations
sufficiently demonstrate the efficiency of the proposed CeFMC
over the competing methods.

Nevertheless, we also compare the time consumptions of
CeFMC with those of existing centralized multi-view clus-
tering methods, where the results are recorded in Table VI.
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TABLE VI
TIME CONSUMPTION (IN SECONDS) COMPARISON BETWEEN CEFMC AND EXISTING CENTRALIZED MULTI-VIEW CLUSTERING APPROACHES.

Dataset MNMF RMKC BMVC LMSuC OPMC EOMSC TBGL FastMICE UDBGL CeFMC Order

ORL 2440.5 5.7 0.6 9.2 134.0 5.9 26.5 3.7 18.1 5.2 3
Flower17 1847.0 6.5 2.1 37.7 1230.6 6.9 500.2 19.1 69.2 27.6 5
HW 31.5 11.0 3.8 13.4 23.3 1.8 1616.8 1.5 313.6 0.2 1
BDGP 128.1 1.1 1.6 5.6 116.1 3.6 OT 4.0 14.4 1.4 2
RGBD 6339.4 594.2 6.8 132.9 9105.0 83.5 OT 214.5 5453.5 71.8 2
DryBean 23.3 2.6 3.2 22.2 84.2 59.7 66321.1 26.6 141.1 1.6 1
AwA 15939.1 6830.6 68.9 2379.8 61798.1 341.1 OT 187.9 6034.4 690.9 4
Avg. order 8.3 3.9 2.0 5.3 8.4 4.0 9.4 3.7 7.4 2.6 2.6
* The Order column is the order of CeFMC on each dataset, while the Order row presents the order averages of each methods on all datasets.

TABLE VII
COMMUNICATION OVERHEAD (IN MB) COMPARISON BETWEEN CEFMC

AND EXISTING FEDERATED MULTI-VIEW CLUSTERING APPROACHES.

Dataset FedCMv FedFCMv FedMVL CeFMC Ratio

ORL 5.41 11.12 25.63 0.5 2.0% - 9.2%
Flower17 10.93 38.13 86.43 1.96 2.3% -17.9%
HW 13.46 28.84 64.09 1.3 2.0% - 9.7%
BDGP 3.15 9.44 20.03 1.19 5.9% -37.8%
RGBD 215.26 215.26 496.75 7.77 1.6% - 3.6%
DryBean 32.71 46.73 101.77 1.98 1.9% - 6.1%
AwA 2113.48 2113.48 4882.62 79.17 1.6% - 3.7%
Order 2.0 3.0 4.0 1.0 /

* The Ratio column is the communication overhead ratio of CeFMC
to the others on each dataset, while the Order row presents the
order averages of each method on all datasets.

Specifically, the proposed CeFMC achieves the best results
on HW and DryBean datasets, as well, the second-best on
BDGP and RGBD datasets. Besides, we sort the methods on
all datasets according to their time consumptions in ascending
order, and list the orders on the right. It can be seen that
CeFMC takes at least the 5-th place. Moreover, the orders are
also averaged at the bottom of Table VI. In specific, CeFMC
is of 2.6, only behind the BMVC method. Note that, BMVC
consists of 6 hyper-parameters, while CeFMC is only of 1
hyper-parameter and therefore more practical, since there is
no validation data set to tune parameters in the unsupervised
learning setting and they are mostly set by experience. Also,
we should notice that the competing methods are all of linear
complexity and the proposed CeFMC takes less computation
time than them, validating its efficiency to a large extent.

In summary, the proposed CeFMC not only takes the lead in
federated multi-view clustering methods, but also is better than
most of the existing centralized multi-view clustering methods
on time consumption, well illustrating its efficiency.

D. Communication efficiency

Motivated by the heavy communication overhead of existing
federated multi-view clustering methods, CeFMC is proposed
to promote the communication efficiency between clients and
the server. In experiment, we validate this by comparing its

communication overhead with those of the existing methods.
Corresponding results are collected in Table VII. It is obvious
that the FedMVL method consumes the most communication
overheads on all datasets, while the proposed CeFMC requires
the least. Meanwhile, by dividing the communication over-
heads of CeFMC with those of competing methods, we can
obtain the communication overhead ratios on the right of Table
VII. It can be seen that CeFMC only takes 1.6% overheads at
most and 37.8% overheads at least of the competing methods.
Besides, we sort the methods on all datasets according to their
communication overheads in ascending order and compute
the averages at the bottom of the table. It can be found
that CeFMC takes the lead among all federated multi-view
clustering approaches. These benefit from the fact that it
approximates the data representation with pseudo label and
centroid matrix, and only requires transmitting the latter, sig-
nificantly reducing the data transmission. To be summarized,
the proposed CeFMC saves a large volume of communication
overhead when clustering, making it more practical in real-
world applications.

E. Ablation study

To promote the communication efficiency of federated
multi-view clustering, the proposed CeFMC method approx-
imates the local data representation on clients with a pseudo
label vector and a centroid matrix. To validate this, an abla-
tion study is conducted in the following. Specifically, a new
approach named CeFMC-H is developed from the CeFMC
method by exchanging full data representations {Hv}Vv=1

between clients and the server. Note that, its details on the
objective and optimization can be found in Appendix. In such
case, we test it on the seven benchmark datasets and compare
its clustering performances and communication overheads with
those of the CeFMC method in Table VIII. It can be observed
that the CeFMC method achieves extremely close clustering
performances to the CeFMC-H method, i.e. only 0.03% ACC
increase, 0.37% NMI decrease and 0.36% purity decrease in
average. Nevertheless, the CeFMC method takes much smaller
communication overheads, i.e. 50.78% at least while 9.14%
at most. Therefore, these two observations well prove that
approximating the local data representation with a pseudo-
label vector and a centroid matrix can not only well preserve
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TABLE VIII
PERFORMANCE COMPARISON OF THE CEFMC-H AND CEFMC METHODS.

Dataset
ACC NMI Puirty Communication Overhead

CeFMC-H CeFMC Gap CeFMC-H CeFMC Gap CeFMC-H CeFMC Gap CeFMC-H CeFMC Ratio
ORL 72.50± 3.2 72.65± 3.9 0.15↑ 85.45± 1.6 85.62± 1.9 0.17↑ 76.25± 1.4 76.35± 3.2 0.10↑ 2.08 0.50 24.04%
Flower17 35.05± 1.9 34.35± 0.9 0.70↓ 33.68± 1.1 33.47± 1.3 0.21↓ 36.01± 1.6 35.69± 1.1 0.32↓ 3.86 1.96 50.78%
HW 94.57± 0.2 94.47± 0.4 0.10↓ 88.44± 0.2 88.32± 0.5 0.12↓ 94.57± 0.2 94.47± 0.4 0.1↓ 2.90 1.30 44.83%
BDGP 54.56± 7.9 54.18± 6.3 0.38↓ 29.79± 6.8 29.14± 5.2 0.65↓ 55.35± 7.5 54.52± 6.2 0.83↓ 5.45 1.19 21.83%
RGBD 19.61± 0.0 20.40± 0.9 0.79↑ 24.27± 0.0 21.52± 0.3 2.75↓ 39.22± 0.4 37.45± 0.5 1.77↓ 85.03 7.77 9.14%
DryBean 80.11± 0.0 80.62± 1.5 0.51↑ 68.98± 0.0 69.56± 2.6 0.58↑ 80.11± 0.0 80.62± 1.5 0.51↑ 10.91 1.98 18.15%
AwA 10.08± 0.3 10.01± 0.2 0.07↓ 11.29± 0.3 11.62± 0.4 0.33↑ 11.76± 0.3 11.66± 0.3 0.1↓ 211.69 79.17 37.40%
Avg. 52.35 52.38 0.03↑ 48.84 48.47 0.37↓ 56.18 55.82 0.36↓ / / 29.45%

* The Gap and Ratio columns refer to performance increase/decrease and communication overhead ratio of CeFMC to CeFMC-H, while the Avg. row
represents the average performance or communication overhead on all datasets.

Fig. 3. Objective value and performance of the consensus label at each
iteration on ORL dataset. Note that, NMI exceeds the axis range and would
twist the figure thus is omitted here.

Fig. 4. Objective value variations of the CeFMC objective function and its
three processes, i.e. representation generation, representation approximation
and label integration, on ORL dataset.

the data information, but also improve the communication
efficiency significantly.

F. Convergence

According to the convergence analysis of Section IV-F,
the proposed CeFMC method is convergent by adopting the

optimization strategy in Section IV-C. To validate this, we run
the CeFMC method on ORL dataset and record the objective
value of Eq. (19) in every iteration. Meanwhile, the consensus
label is also evaluated at each update and corresponding results
are accumulated. As a result, they are plotted in Fig. 3,
where NMI follows a similar trend but exceeds the axis range
and would twist the figure thus is not presented. It can be
found that the objective value and clustering performances,
i.e. ACC and purity, first increase dramatically and then rise
to the maximum monotonically along with iteration. This not
only well validates convergence of the alternate optimization
procedure, but also confirms the rationality of the proposed
CeFMC objective function.

According to Section IV-A, the proposed CeFMC method
can be composed of four relatively independent processes,
i.e. representation generation, representation approximation,
label integration and alternate update, where the first three
correspond to Eq.(13), Eq. (15) and Eq. (18), respectively. In
such setting, we explore the objective value variations of the
three processes and show them in Fig. 4. It can be observed
that the objective value of CeFMC increases monotonically,
which keeps consistent with that of Fig. 3. Nevertheless, the
objective values of the representation generation and label
integration also rise monotonically, while that of representation
approximation decreases to minimum. This is caused by the
fact that data representation H

(0)
v is initialized to the left

singular vectors of data Xv corresponding to the k largest
singular values which is the global optimal value of represen-
tation generation process in Eq. (13). The phenomenon well
illustrates that the data representation computed by each client
independently only encodes the data information of one view
and is not the most suitable for clustering. With guidance from
label integration of the server, the proposed CeFMC method
can gradually generate better data representations, improving
the clustering performance ultimately. In other words, the
optimization strategy of CeFMC is to find the balance among
the aforementioned three processes.

G. Parameter Study
As seen from the objective function of Eq. (19), the pro-

posed CeFMC method introduces two hyper-parameters λ and
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TABLE IX
PERFORMANCE COMPARISON OF THE PROPOSED CEFMC METHOD IN λ ⊥ β AND λ = β SETTINGS.

Dataset
ACC NMI Puirty

λ ⊥ β λ = β Gap λ ⊥ β λ = β Gap λ ⊥ β λ = β Gap
ORL 73.38± 2.4 72.65± 3.9 0.72↓ 86.40± 1.5 85.62± 1.9 0.78↓ 76.67± 2.4 76.35± 3.2 0.33↓
Flower17 35.02± 1.2 34.35± 0.9 0.67↓ 33.35± 1.1 33.47± 1.3 0.12↑ 36.04± 1.5 35.69± 1.1 0.35↓
HW 94.72± 0.3 94.47± 0.4 0.25↓ 88.66± 0.3 88.32± 0.5 0.33↓ 94.72± 0.3 94.47± 0.4 0.25↓
BDGP 57.27± 8.7 54.18± 6.3 3.10↓ 32.84± 7.8 29.14± 5.2 3.71↓ 57.51± 8.6 54.52± 6.2 3.00↓
RGBD 20.55± 1.0 20.40± 0.9 0.15↓ 20.91± 0.3 21.52± 0.3 0.61↑ 36.92± 0.5 37.45± 0.5 0.53↑
DryBean 81.13± 0.0 80.62± 1.5 0.51↓ 70.38± 0.0 69.56± 2.6 0.81↓ 81.13± 0.0 80.62± 1.5 0.51↓
AwA 10.14± 0.2 10.01± 0.2 0.13↓ 11.60± 0.4 11.62± 0.4 -0.02↓ 11.71± 0.3 11.66± 0.3 0.06↓
Avg. 53.17 52.38 0.79↓ 49.16 48.46 0.70↓ 56.39 55.82 0.57↓
* The Gap column refers to performance increase or decrease of λ = β to λ ⊥ β, while the Avg. row represents the average

performance on all datasets.

Fig. 5. Accuracies of the proposed CeFMC method with parameter λ and β
taking different values in range {2−10, 2−9, · · · , 210} on ORL and Flower17
datasets.

β to balance the weights of representation generation, repre-
sentation approximation and label integration processes. In the
above experiments, both of them are grid-searched in range
{2−10, 2−9, · · · , 210}. To analyze their effects on clustering
performance, we collect the corresponding accuracies and
present them in Fig. 5. It can be observed that the clustering
accuracy keeps relatively stable when λ and β take different
values. Meanwhile, we notice that compulsively setting the
two parameters with the same value, i.e. λ = β, can obtain
similar best performances to setting them independently, i.e.
λ ⊥ β. Specifically, best experiment results in the both settings
are compared in Table IX. Hence, we recommend to set
λ = β in real-world applications to improve practicality of
the proposed CeFMC method.

VI. CONCLUSION

To keep the data privacy of each client, existing federated
multi-view clustering approaches propose to share the encoded
data representations among clients and server rather than the
original data observations. However, the data representations
are transmitted at every iteration of model training, leading
to heavy communication overheads. Meanwhile, most of them
employ the matrix factorization and neural network encoding
techniques to reduce computational complexity, but results
in unsatisfactory clustering performance due to the failure
of considering the similarity information among data sam-
ples. To solve these two issues, this paper first proposes the

CeFMC framework by approximating the data representation
with a pseudo-label and centroid matrix and sharing them
in model training, saving a large volume of communication
overhead. Then, the linear kernel function is utilized implicitly
to incorporate the pairwise similarities among data in its
instantiation. Moreover, we not only introduce its optimization
strategy thoroughly, but also analyze its computation com-
plexity, communication overhead and convergence. Neverthe-
less, we conduct extensive experiments on seven benchmark
datasets and compare it with existing federated multi-view
clustering and centralized multi-view clustering methods. In
both comparisons, the proposed CeFMC method achieves
obviously better results, well validating its effectiveness and
efficiency. In the near future, we will continue to explore better
solutions to promote the efficiency of federated multi-view
clustering, since the communication bandwidth is extremely
limited in most real-world applications. Meanwhile, the pro-
posed CeFMC method lacks a feasible strategy to evaluate the
contribution of each client and we will explore this intensively.
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