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Contrastive Multi-View Kernel Learning
Jiyuan Liu , Xinwang Liu , Senior Member, IEEE, Yuexiang Yang, Qing Liao,

and Yuanqing Xia , Senior Member, IEEE

Abstract—Kernel method is a proven technique in multi-view
learning. It implicitly defines a Hilbert space where samples can
be linearly separated. Most kernel-based multi-view learning algo-
rithms compute a kernel function aggregating and compressing the
views into a single kernel. However, existing approaches compute
the kernels independently for each view. This ignores complemen-
tary information across views and thus may result in a bad kernel
choice. In contrast, we propose the Contrastive Multi-view Kernel —
a novel kernel function based on the emerging contrastive learning
framework. The Contrastive Multi-view Kernel implicitly embeds
the views into a joint semantic space where all of them resemble
each other while promoting to learn diverse views. We validate the
method’s effectiveness in a large empirical study. It is worth noting
that the proposed kernel functions share the types and parameters
with traditional ones, making them fully compatible with existing
kernel theory and application. On this basis, we also propose a
contrastive multi-view clustering framework and instantiate it with
multiple kernel k-means, achieving a promising performance. To
the best of our knowledge, this is the first attempt to explore
kernel generation in multi-view setting and the first approach to
use contrastive learning for a multi-view kernel learning.

Index Terms—Contrastive learning, kernel function, kernel
method, multi-view clustering, multiple kernel clustering.

I. INTRODUCTION

K ERNEL technique is a fundamental paradigm in ma-
chine learning that has received considerable attention

in real-world applications, such as image processing [1], [2],
object detection [3], [4] and gene prediction [5]. To group the
nonlinear-separable data, it defines an implicit kernel mapping
which maps them into a high-dimensional Hilbert space where
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a clear decision boundary can be found [6]. Over the years,
many kernel-based learning methods have been developed. The
representatives are Kernel Support Vector Machines [6], Gaus-
sian Processes [7] and Kernel k-means Clustering [8].

One obvious drawback of the methods mentioned above is
that they can only handle data with a single kernel. However,
in most practical settings, the data are collected from different
sources/views. It would not make sense (nor would it be possible
in most cases) to perform prediction without using all available
information. For instance, lung patients are often diagnosed
with a combination of nucleic acid test, blood test, and CT
scan. In order to deal with these multi-view data problems,
plenty of methods have been proposed [9], [10], with multiple
kernel learning (MKL) being one of the most popular method-
ologies [11], [12]. MKL first computes one or several kernel
matrices for each view and then aggregates the kernel matrices
optimally for the learning task.

Current multiple kernel algorithms can be roughly grouped
into three categories. Algorithms in the first category (known as
early-fusion methods) directly learn a consensus kernel or graph
for the subsequent clustering or classification process [11], [13],
[14], [15], [16]. Frequently, both steps are unified into a single
objective formulation, which can be solved using alternating
optimization. For instance, Huang and Kloft et al. assume that
the consensus kernel can be parameterized into a weighted linear
combination of the pre-specified ones [13], [14], [17]. On this
basis, Liu et al. propose a matrix-induced regularization to dy-
namically adjust the weights along with optimization, achieving
satisfactory performance improvement [15]. Then, Liu et al.
claim that the optimal kernel can be found in the proximity
of the weighted kernel combination [16]. Meanwhile, some
researchers propose to push the consensus kernel close to each
pre-specified kernel [18], [19]. Since kernel matrix stores the
pairwise similarities of the samples, it makes sense to transform
the kernel matrix into a graph, in which a graph algorithm can be
employed subsequently [20], [21]. Upon this assumption, Ren
et al. compute candidate affinity graphs from pre-specified ker-
nels and learn the consensus kernel and graph coherently [22].
Another category of MKL methods (called late-fusion) first
imputes multiple base partitions from each kernel (e.g., using
kernel k-means) and then integrates the partitions into a unified
one [23]. For instance, Wang et al. maximize the alignment
between the consensus partition and the weighted combination
of base partitions [24]. In addition, we group the rest into the third
category, in which a hierarchical method also achieves promising
performance [25].
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Fig. 1. Generation paradigm of the Contrastive Multi-view Kernel on images. For ease of expression, we consider only RGB and Depth images as the two data
views. At the very beginning, the data xi and x′

i are encoded into a unified space with two mapping functions fW1
(·) and fW2

(·). Then, they are projected
into a Hilbert space with an implicit kernel mapping ϕ(·). Here, two representations of each data sample are considered as ‘positive pairs’ (for which we want a
high kernel similarity < φi,φ

′
i >) while disjointed data samples are considered as ‘negative pairs’ (for which we want low kernel similarity < φj ,φ

′
i >, thus

promoting the diversity of the learned mappings). Note that the correlations between the samples are partially plotted for simplicity of the picture. Finally, the
kernel matrices of each view can be obtained as K1 and K2.

All the above methods concentrate on how to fuse pre-
specified kernels, but ignore that the kernel quality is a per-
formance bottleneck. In contrast, instead of using traditional
kernel functions, we propose the Contrastive Multi-view Kernel
(CMK), a novel unsupervised kernel generation paradigm to
compute quality kernels by leveraging complementary infor-
mation from the data views. It is inspired by the paradigm
of contrastive learning, and the key idea is to promote a high
similarity across views for a given data sample while learning
diverse and heterogeneous views. The approach is illustrated in
Fig. 1. First, we separately encode the multi-view data into a
unified (semantic) space using their respective learned mapping
functions. Second, the obtained data representations are further
projected into an implicit Hilbert space. Here, the represen-
tations of any two views of one (and the same) data sample
are considered as positive pairs, so their kernel similarities
are maximized. Meanwhile, the representations associated with
two data samples are treated as negative pairs, so their kernel
similarities are minimized. With updating the mapping func-
tions, the proposed contrastive multi-view kernel function and
corresponding kernel matrix of each data view can be obtained
finally.

In a large experimental study, we compare the CMK with
multiple types of traditional kernels, observing a promising per-
formance improvement. Note that the proposed kernel functions
share the types and parameters with traditional ones, making
them fully compatible with existing kernel theory and appli-
cations. In other words, once the associated variables are opti-
mized, the CMK is able to be applied in existing kernel methods,
such as kernel SVM and kernel k-means, without any extra cost.
Nevertheless, we find it can largely improve the performance
of Multiple Kernel Clustering (MKC) algorithms to jointly
optimize the CMK loss and theirs. On this basis, we propose
a Contrastive Multi-view Clustering framework and instantiate
it with the widely used Multiple Kernel k-means (MKKM),
surpassing state-of-the-art methods in experiment. To the best of
our knowledge, this is the first attempt at leveraging contrastive
learning for multi-view kernel learning and of exploring kernel
generation in a multi-view setting. Our work opens the door to

new avenues in future research on using contrastive learning in
multi-view and kernel learning.

The rest paper is organized as follows. Section II introduces
two parts of closely related researches, including traditional
kernel generation and contrastive learning. Section III presents
the proposed CMK generation paradigm, its implementation,
instance, complexity analysis and large-scale solution. In Sec-
tion IV, we propose the Contrastive Multi-view Clustering
framework and instantiate it with Multiple Kernel k-means.
Experiment details, such as parameter setting, performance
comparison and insights of model building, are introduced and
analyzed in Section V. At last, we make the conclusion in
Section VII.

II. RELATED WORK

Since the proposed CMK leverages contrastive learning on
kernel generation, we briefly review the closely related re-
searches of the two domains.

A. Kernel Generation

For a set of data samples {xi}Ni=1 drawn from a space X ⊆
R

dx , a kernel method encodes them into a Reproducing Kernel
Hilbert Space H ⊆ R

dH with an implicit kernel mapping ϕ(·).
Since the dimension of Hilbert space H could be infinite, the
mapping function ϕ(·) is hard to define explicitly, making it
impossible to compute corresponding embeddings. Thanks to
Mercer’s theorem [26], we can measure the product of vectors
in space H with the kernel function k(·, ·) in space X as

K [i, j] = ϕ(xi)
�ϕ(xj) = k(xi,xj), (1)

where [i, j] refers to the value in ith row and jth column of
target kernel matrix K. As a supplement, the widely used kernel
functions are partially listed in Table I.

To deal with multi-view data, current multiple kernel methods
generate one or more kernels on each data view. They usually
focus on improving performance via exploring more effective
way to fuse discriminative information from these kernels [11],
[13], [14], [15], [16], but overlook the fact that kernel quality is a
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TABLE I
REPRESENTATIVES OF TRADITIONAL KERNEL FUNCTION

bottleneck. There are also some researches about how to choose
the parameters in kernel functions, such as [27]. However, they
are out of our scope, since the proposed CMK provides a
new kernel generation paradigm and shares the same types and
parameters with traditional kernel functions.

B. Contrastive Learning

Contrastive learning is first proposed in [28] to address deep
visual representation learning problem. By substantially promot-
ing the representation capability of neural networks, it attracts
lots of interest from industry and the research community [29],
[30], [31], [32]. The idea beneath contrastive learning is to
learn discriminative embeddings via maximizing the similarities
between two random data augmentations.

For data {xi}Ni=1, two separate data augmentation operators
are randomly selected from an augmentation family T . As a
result, 2N augmented samples are derived. Then, a base encoder
network f(·) is employed to map them into latent representa-
tions {hi}2N

i=1. Subsequently, a projection head g(·), which only
consists of multiple linear layers, is adopted to obtain {zi}2N

i=1.
Denoting xj(i) as the augmentation of the ith data sample,
contrastive learning treats them as positive pair but the rest as
negative pairs. By maximizing the similarities between positive
pairs and minimizing those between negative pairs, it defines the
Normalized Temperature-scaled Cross Entropy Loss (NT-Xent)
as follows:

�i,j(i) = − log
exp(sim(zi, zj(i))/τ)∑2N

k=1 1k �=i exp(sim(zi, zk)/τ)
, (2)

where 1k �=i ∈ {0, 1} is the indicator function, τ denotes a tem-
perature parameter and

sim(zi, zj) =
z�i zj

‖zi‖‖zj‖
. (3)

Apart from NT-Xent, other types of loss function are tested but
achieve worse performances. In addition, Yeh et al. propose to
remove the positive pair in the denominator of (2) and achieve
better results [33]. By introducing supervisory signals, Khosla
et al. refine the loss in (2) by labeling samples of the same class
and their augmentations as positive pairs [32].

III. CONTRASTIVE MULTI-VIEW KERNEL

We leverage the contrastive learning paradigm to multi-view
kernel learning. In the beginning, the CMK generation paradigm
and its implementation are described. Then, we introduce five
common instances of our general paradigm. Finally, CMK’s
complexity and large-scale solution are analyzed in detail.

A. Generation Paradigm

Given a set of multi-view data {xv
i }

N,V
i,v=1 wherexv

i ∈ R
dv , we

first eliminate the dimension differences by encoding them into
a unified latent space Xh ⊆ R

d with mapping functions fWv
(·)

via

hv
i = fWv

(xv
i ) = xv

iWv, (4)

in which Wv ∈ R
dv×d. Denoting L2(·) as the L2-norm of a

vector, the normalized data representations can be obtained via

zvi = fN (hv
i ) = hv

i / L2(h
v
i ). (5)

With ϕz(·) being an implicit but known kernel mapping, such as
Gaussian mapping, we project the representations{zvi }

N,V
i,v=1 into

corresponding Hilbert space H. As a consequence, the overall
kernel mapping of the vth view is obtained as

ϕv
c (x

v
i ) = ϕz(z

v
i ) = ϕz(fN (fWv

(xv
i ))), (6)

in which the resulting kernel function is

kvc (x
v
i ,x

v
j ) = kz(z

v
i , z

v
j )

= kz(fN (fWv
(xv

i )), fN (fWv
(xv

j ))), (7)

where kz(·, ·) refers to the kernel function defined by kernel
mapping ϕz(·), shown as

kz(u,v) = ϕz(u)
�ϕz(v). (8)

Also, it is obvious that the kernel matrix of vth view should be

Kv
c [i, j] = kvc (x

v
i ,x

v
j ). (9)

As an arbitrary data view can be regarded as augmentation
of the others semantically, we can naturally leverage contrastive
learning loss on multi-view theory [34], [35]. Similar to the
unsupervised setting in [28], {xv

i }Vv=1 are regarded as a positive
pair, leaving the remaining pairs as negative pairs. Thus, the loss
of the ith data sample in the vth view can be written as

�i,v =
1

V − 1

V∑
v′=1,v′ �=v

− log
exp(kz(z

v
i , z

v′
i ))∑

j,v′′∈Ai,v
exp(kz(zvi , z

v′′
j ))

,

(10)
where

Ai,v = {1, 2, . . . , N} × {1, 2, . . . , V } \ {(i, v)}. (11)

It can be observed that we measure the similarity of sample pairs
with kernel function and directly maximize these of positive
pairs while minimize the rest. The overall loss is implemented
as

�c =
1

NV

N,V∑
i,v=1

�i,v. (12)

By minimizing the loss in (12), only variables {Wv}Vi=1 will
be optimized, determining a unique kernel mapping ϕv(·) in
(6) and kernel matrix Kv in (9) for the vth view. Besides, we
visualize the generation paradigm of CMK in Fig. 1.

It is worth to note that the CMK refers to a unified kernel
paradigm and differs from each other by adopting a different
kernel mapping ϕz(·) in (6) and kernel function kz(·, ·) in (7).
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Algorithm 1: The Contrastive Multi-View Kernel Genera-
tion Paradigm.

Input: Data {xv
i }

N,V
i,v=1

Output: Kernel mapping ϕv
c (·) and kernel function kvc (·, ·)

1: Initialize the mapping weights {Wv}Vv=1 randomly;
2: t = 0;
3: while t < epochs do
4: # forward
5: Compute the loss value �c in (12);
6: # back propagation
7: Compute the loss gradients ∂�c/∂Wv via (13);
8: Update {Wv}Vv=1 via (23);
9: t = t+ 1;

10: end while
11: Obtain the updated weights {Wv}Vv=1;

For example, a Gaussian CMK can be obtained when instantiat-
ing ϕz(·) and kz(·, ·) with Gaussian kernel. More instantiation
details are thoroughly described in Section III-D. Due to this
pairwise correlation, the CMK is proposed to compete with
traditional kernels correspondingly, such as Gaussian CMK
versus Gaussian kernel. Therefore, it can be utilized into a large
set of kernel methods to improve their performance, enjoying a
promising application prospect.

B. Implementing the Critic

In order to optimize the proposed model, we adopt the Gra-
dient Descent (GD) algorithm and compute the gradients on
variables {Wv}Vv=1 with chain rule as

∂�c
∂Wv

=

N∑
i=1

(
∂�c
∂zvi

· ∂z
v
i

∂hv
i

· ∂hv
i

∂Wv

)
. (13)

By utilizing (12), the gradient of �c with respect to zvi can be
decomposed into

∂�c
∂zvi

=
1

NV

N,V∑
i,′v′=1

∂�i,′v′

∂zvi
. (14)

For any target i0 and v0, we separate the sub-losses of
(12) into three groups, including �i0,v0

, {�i0,v}Vv=1,v �=v0
and

{�i,v}N,V
i=1,v=1,i �=i0

. Correspondingly, (14) can be rewritten as

∂�c
∂zv0

i0

=
1

NV

⎛
⎝∂�i0,v0

∂zv0
i0

+

V∑
v=1,v �=v0

∂�i0,v

∂zv0
i0

+

N,V∑
i=1,v=1,i�=i0

∂�i,v
∂zv0

i0

⎞
⎠ .

(15)

Denoting

Bi,v =
∑

i,′v′∈Ai,v

exp(kz(z
v
i , z

v′

i′ )), (16)

Each item of (15) can be computed as follows:

1) For ∂�i0,v0
/∂zv0

i0
, it holds that

∂�i0,v0

∂zv0
i0

= − 1

V − 1

V∑
v=1,v �=v0

∂kz(z
v0
i0
, zvi0

)

∂zv0
i0

+
∑

i,v∈Ai0,v0

exp(kz(z
v0
i0
, zvi ))

Bi0,v0

·
∂kz(z

v0
i0
, zvi )

∂zvi
(17)

2) For ∂�i0,v/∂z
v0
i0

, we can get

∂�i0,v

∂zv0
i0

= − 1

V − 1
·
∂kz(z

v
i0
, zv0

i0
)

∂zv0
i0

+
exp(kz(z

v
i0
, zv0

i0
))

Bi0,v
·
∂kz(z

v
i0
, zv0

i0
)

∂zv0
i0

(18)

3) For ∂�i,v/∂z
v0
i0

, it is obvious that

∂�i,v
∂zv0

i0

=
exp(kz(z

v
i , z

v0
i0
))

Bi,v
·
∂kz(z

v
i , z

v0
i0
)

∂zv0
i0

(19)

Furthermore, denoting zj′ and hi′ as the j ′th and i′th element
of zvi and hv

i , we can obtain

∂zvi
∂hv

i

=

⎡
⎣ d∑
j′=1

∂zj′

∂h1
, · · ·

d∑
j′=1

∂zj′

∂hi′
, . . . ,

d∑
j′=1

∂zj′

∂hd

⎤
⎦ , (20)

where

∂zj′

∂hi′
= 1i′=j′

(
d∑

k=1

h2
k

)−1/2

+ hi′hj′

(
d∑

k=1

h2
k

)−3/2

(21)

Additionally, the gradient of hv
i on Wv can be computed as

∂hv
i

∂Wv
= xv�

i (22)

By setting the learning rate to α, the updating of Wv is written
as

Wv = Wv − α
∂�c
∂Wv

. (23)

In summary, we present an overview of the CMK generation
paradigm in Algorithm 1.

C. Complexity and Large-Scale Solution

In this section, we analyze the computation complexity of
the proposed CMK. Since the weights {Wv}Vv=1 are optimized
with the GD algorithm, the complexity is only dependent on
the gradient computation. To compute the gradient ∂�c/∂Wv ,
one should compute (13), (15), (20) and (22). Note that, the
computation complexity of (20) and (22) are only related to
the dimension d of latent representations, and therefore are
ignored here. At the very beginning, we pre-compute and store
{Ci,v}N,V

i,v=1 with each being

Ci,v =

N,V∑
i,′v′=1

exp(kz(z
v
i , z

v′

i′ )). (24)
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Corresponding complexity is O(V 2 N2). It is obvious that

Bi,v = Ci,v − exp(kz(z
v
i , z

v
i )), (25)

which prevents from duplicated computation of Bi,v in (17),
(18) and (19). In this way, the computation of (15) by uti-
lizing (17), (18) and (19) only requires O(V N) complexity.
Since ∂�c/∂Wv of (13) is the sum of N items with each
consisting of (15), its complexity is O(V N2). To optimize the
whole model, one needs to compute {∂�c/∂Wv}Vv=1, resulting
in the O(V 2 N2) complexity. Considering the aforementioned
pre-computation, the overall complexity is O(2V 2 N2) which
can be rewritten as O(V 2 N2).

The aforementioned quadratic complexities prevent CMK
from handling with large-scale data. A direct and effective
solution is to employ the Stochastic Gradient Descent (SGD)
strategy in the optimization where data are split into batches.
In specific, given a random batch of multi-view data {xv

i }
Nb,V
i,v=1,

corresponding loss can be accumulated in (10) and (12) in which

Ai,v = {1, 2, . . . , Nb} × {1, 2, . . . , V } \ {(i, v)}. (26)

In this way, the computation complexity for each data batch
is O(V 2N2

b ). With t denoting the number of epochs, tN/Nb

data batches will be used in the model training. Therefore,
the overall complexity is O(tV 2NbN) = O(V 2N2

b · tN/Nb).
SinceNb << N in most neural network researches, we can train
the CMK model within a linear time.

Moreover, two techniques will also help mitigate the large-
scale problem. First, several deep learning packages (including
PyTorch and TensorFlow) can accelerate the Gradient Descent
algorithm using GPU computations. Second, we can separate
data into two splits and use one part to train CMK’s parameters
and the other part or all of them to compute the kernel matrices.

D. Instantiation

It is obvious from (6) and (7) that the proposed CMK mapping
function ϕv

c (·) and kernel function kvc (·, ·) are defined on the
given ϕz(·) and kz(·, ·) which can be instantiated with the
widely-used traditional kernels. Here, five common ones are
concerned, including Gaussian, Linear, Polynomial, Sigmoid
and Cauchy. Due to the implicit property of mapping function,
only the kernel function definitions are presented in Table I.
Taking the Gaussian kernel as an example, the instantiated CMK
kernel function of vth view is

kvc (x
v
i ,x

v
j ) = exp

(
−‖fN (fWv

(xv
i ))− fN (fWv

(xv
j ))‖2

2σ2

)
.

(27)
For the computation of (17), (18) and (19), we also list

gradients of the five kernel types in the following.
1) Gaussian:

∂kz(xi,xj)

∂xi
=

exp(−‖xi − xj‖2/2σ2)

σ2
· (xj − xi)

(28)
2) Linear:

∂kz(xi,xj)

∂xi
= xj (29)

3) Polynomial:

∂kz(xi,xj)

∂xi
= a(ax�

i xj + c)d−1 · xj (30)

4) Sigmoid:

∂kz(xi,xj)

∂xi
= a(1− tanh2(ax�

i xj + c)) · xj (31)

5) Cauchy:

∂kz(xi,xj)

∂xi
=

2

σ(‖xi − xj‖2/σ + 1)2
· (xi − xj)

(32)

IV. CONTRASTIVE MULTI-VIEW CLUSTERING

Apart from the kernel generation paradigm, we propose to
unify the CMK generation into downstream kernel tasks for the
sake of improving their performance. Here, one considers the
Multiple Kernel Clustering (MKC) setting. At the beginning, the
proposed framework is introduced. Then, we instantiate it with
the widely used Multiple Kernel k-means. Finally, an alternate
strategy is designed to optimize the resultant problem.

A. Framework

Existing MKC methods assumes the kernel matrices are com-
puted in advance and fixed during the clustering process. Denote
m ready-made kernels {Kp}mp=1, they prefer to minimize a loss
like

�K = gΘ({Kp}mp=1, F), s.t. gΘ ∈ G, (33)

where G is a class of objective functions and Θ represents the
extra temporary variables. Meanwhile, F is the target hard label
(RN×1) [36] or soft label (RN×k with k being the number of
class) [15], [19] and obtained via optimization. Here, we propose
to perform kernel clustering along with CMK generation by
defining the overall loss as

� = �c + λ�K. (34)

In (34), the two processes contribute to each other, i.e., the CMK
paradigm generates kernel matrices for the latter MKC model
to achieve a better performance; as a feedback, a better MKC
model motivates the generation of more specific CMK matrices.
In the experiments, we will show this unified learning mode
outperforms the separated one.

B. Instantiation

Without loss of generality, we instantiate the aforementioned
contrastive multi-view clustering framework with Multiple
Kernel k-means (MKKM) [37], whose objective function gΘ
should be

m∑
p=1

βpTr
[
Kp(IN − FF�)

]
, s.t. F�F = Ik, (35)

in which βp is the weight of pth kernel, Ik refers to the identity
matrix of size k andF ∈ R

N×k is the target soft label. Therefore,
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Algorithm 2: Contrastive Multiple Kernel k-Means.

Input: Data {xv
i }

N,V
i,v=1

Output: Data cluster assignment Y
1: Obtain the updated weights {Wv}Vv=1 via Algorithm 1;
2: t = 0;
3: while t < epochs do
4: # kernel clustering
5: Compute the kernel matrix {Kv

c}Vv=1 via (9);
6: Update the soft label F via (40);
7: # kernel function learning
8: Compute the loss value � in (36);
9: Compute the loss gradients ∂�/∂Wv via (37);

10: Update {Wv}Vv=1 via (38);
11: t = t+ 1;
12: end while
13: Obtain the soft label F;
14: Obtain Y by performing k-means on F;

we can obtain the model, named Contrastive Multiple Kernel
k-means (CMKKM) for brevity, as

� =
1

NV

N,V∑
i,v=1

�i,v + λ
1

N

V∑
v=1

βvTr
[
Kv

c (IN − FF�)
]

s.t. F�F = Ik, (36)

where �i,v represents the loss of Gaussian CMK.1 Here, we con-
sider the kernel function learning and Multiple Kernel k-means
task as two equally important parts and set λ = 1. Also, βv is
globally set to 1/V in order to balance the kernel information
from each data view. Note that, a large set of MKC algorithms,
apart from Multiple Kernel k-means, can be unified in the
proposed framework, showing its generality.

C. Optimization

In the optimization problem of (36), there are two independent
sets of variables, i.e., the weights {Wv}Vv=1 in kernel functions
{kvc (·, ·)}Vv=1 and the target soft label F. To solve them, we
design an alternate strategy in which one variable is computed
while the others are fixed.

For {Wv}Vv=1 with fixedF, Gradient Descent (GD) algorithm
is adopted, where their gradients are computed with chain rule
as

∂�

∂Wv
=

N∑
i=1

∂�

∂zvi
· ∂z

v
i

∂hv
i

· ∂hv
i

∂Wv
. (37)

Due to the space limit, we omit the detailed derivation here. With
setting the learning rate to α, the updating is shown as

Wv = Wv − α
∂�

∂Wv
. (38)

1.In the following, we use Gaussian CMK in CMKKM by default.

Once fixing {Wv}Vv=1, the CMK matrices {Kv
c}Vv=1 are avail-

able and the problem can be transformed to

maxF Tr

[
V∑

v=1

Kv
cFF

�

]
, s.t. F�F = Ik. (39)

Suppose ui and σi be the ith pairwise eigen-vector and eigen-
value of matrix

∑V
v=1 K

v
c , the solution of F, by following [25],

should be the horizontal concatenation of k eigen-vectors as

F∗ = [ui′1
;ui′2

; · · · ;ui′k
]

s.t. {i′t}kt=1 ⊂ {1, 2, . . . , N}, (40)

where the corresponding {σi′t
}kt=1 are the k largest out of N

eigen-values. Moreover, we present the overall optimization
strategy in Algorithm 2.

V. EXPERIMENT

In the following, we first introduce the used datasets and then
design experiments to validate effectiveness of the proposed
CMK generation paradigm and CMKKM algorithm.

A. Datasets

At the very beginning, we roughly define the two types of
multi-view data mentioned in the question as follows:

1) Multi-feature: This kind of data originates from a sin-
gle modality of target samples. In most cases, they are
extracted by designing multiple features. For example,
Scale-Invariant Feature Transform (SIFT) and Histogram
of Oriented Gradient (HOG) features (two data views) can
be extracted from a RGB image (one modality).

2) Multi-modal: This kind of data consists of multiple modal-
ities of target samples. In most cases, they are collected
from multiple sensors, sources, etc., such as the data
comprised of x-rays plus blood tests which is mentioned
in this question.

Note that, apart from multi-modal, multi-feature is an another
classical type of multi-view concept. This can be proved by
the wide application of multi-feature datasets [10], [38], [39]
in multi-view literature.

In the following, we briefly introduce the view meanings of
the used datasets:

1) BBC2 [40] (multi-feature) is processed from documents
of the BBC news website corresponding to stories in five
topics, i.e., business, entertainment, politics, sport and
technology. Each data view corresponds to a segment of
the documents3.

2) BBCSport2 [40] (multi-feature) is processed from docu-
ments of the BBC Sport website corresponding to sport
news in five topics, i.e., athletics, cricket, football, rugby
and tennis. Each data view corresponds to a segment of
the documents3.

2.http://mlg.ucd.ie/datasets/bbc.html
3.http://mlg.ucd.ie/datasets/segment.html
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TABLE II
DETAILS OF THE USED DATASETS

3) CiteSeer4 [41] (multi-modal) contains four views, i.e.,
content, inbound, outbound and cites, of the documents.
There are 3707 words in content view and 4732 links in
the other views.

4) Cora4 [41] (multi-modal) contains four views, i.e., con-
tent, inbound, outbound and cites, of the documents.
There are 1433 words in content view and 5492 links
in the other views.

5) Movies4 [41] (multi-modal) is extracted form IMDb5 to
have two data matrices with the first describing the movie
keywords while the second describing the movie actors.

6) AwA6 [42] (multi-feature) consists of animal images with
pre-extracted feature representations. Note we only use
the Color Histogram and Local Self-Similarity features
here.

7) CCV7 [43] (multi-modal) consists of three popular
data features, including SIFT, Spatial-Temporal Interest
Points (STIP), and Mel-Frequency Cepstral Coefficients
(MFCC), where the first two are extracted from visual
modality and the last is from audio modality.

8) NusWide8 [44] (multi-feature) extracts five features,
including Color Histogram (CH), Color Correlogram
(CORR), Edge Direction Histogram (EDH), Wavelet
Texture (WT) and Color Moments (CM), from a large
set of web images.

9) YtVideo9 [45] (multi-modal) extracts a set of visual, au-
dio and text features from Youtube game videos. Here,
we use HOG (visual), MFCC (audio), Latent Dirichlet
Allocation (LDA) [46] (text) features.

10) CropLand10 [47] (multi-modal) collects a large vol-
ume of images by RapidEye satellites (optical) and
the Unmanned Aerial Vehicle Synthetic Aperture Radar

4.https://lig-membres.imag.fr/grimal/data.html
5.https://www.imdb.com
6.https://cvml.ist.ac.at/AwA/
7.https://www.ee.columbia.edu/ln/dvmm/CCV/
8.https://lms.comp.nus.edu.sg/wp-content/uploads/2019/research/nuswide/

NUS-WIDE.html
9.https://archive.ics.uci.edu/ml/datasets/YouTube+Multiview+Video+

Games+Dataset
10.https://archive.ics.uci.edu/ml/datasets/Crop+mapping+using+fused+

optical-radar+data+set

(UAVSAR) system (Radar) over an agricultural region
near Winnipeg, Manitoba, Canada on 2012. Correspond-
ingly, two features are extracted.

Overall, we summarize the dataset specifications in Table II.

B. CMK: Kernel Quality Improvement

To evaluate the kernel quality, we adopt three common clus-
tering metrics by applying standard kernel k-means on the
generated kernels. The metrics are Accuracy (ACC), Normalized
Mutual Information (NMI) and Purity. Their definitions are
detailed in Appendix. We also generate traditional kernels and
CMK with the same set of parameters as shown in Table IV to
ensure the fairness of comparison. Additionally, the dimension
of latent representations d and the learning rate α are set to 128
and 1.0 globally.11

For the small-scale datasets, including BBC, BBCSport, Cite-
Seer, Cora and Movies, we adopt the GD optimization strategy,
while SGD strategy with batch size 1024 is employed on AwA,
CCV, NusWide, YtVedio and Cropland. In experiment, we apply
kernel k-means on both traditional kernel and CMK of the
ten datasets. Note that, for YtVideo and CropLand, Nyström
technique [48] is employed to prevent from memory error. In
specific, corresponding accuracy comparison is presented in
Table III, where the best results are marked in bold. We make
the following observations.

1) CMK generation paradigm improves the kernel quality to
a large extent. For example, it promotes about 5%, 6%,
20%, 23%, 3%, 1%, 3%, 5%, 15% and 10% accuracy of
Gaussian kernel on ten datasets, respectively.

2) The results on some datasets and settings decrease, es-
pecially for the small-scale datasets, i.e., BBCSport and
Movies. This may be caused by the random initialization
of mapping weightsWv in (4). In the optimization, we use
the Gradient Descent algorithm which may stop on bad
local minimums. This problem can be eased by adopting
a more robust optimization strategy, such as Adam [49].
Moreover, this may also be affected by the over-fit prob-
lem as discussed in Section V-D. Some performance
decreases are also observed on Cauchy CMKs on AwA
and NusWide. But it can be observed that they are much
smaller than the improvements in other settings.

3) Accuracies of Gaussian and Linear CMKs consistently
outperform those of traditional kernels, while the others
are not. We leave this in future research.

4) The average kernel (average of several traditional kernels)
has often been observed to be a simple yet tough base-
line in kernel learning [35]. The reason is that averaging
kernels integrates cross-view information. Nevertheless,
CMK outperforms the traditional average kernel in most
cases.

Nevertheless, the NMI and Purity values follow a similar trend
and are shown in Appendix. Overall, we can conclude that the
proposed CMK generation paradigm can improve kernel quality
compared with traditional kernel generation approaches.

11.We do not tune any parameter in experiment for practicality.
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TABLE III
ACCURACY COMPARISON OF TRADITIONAL KERNEL AND CMK ON KERNEL k-MEANS

C. CMK: Downstream Task

Since the proposed method is a kernel generation paradigm,
we also validate its effectiveness via comparing the perfor-
mances of multiple kernel methods on CMKs and traditional
kernels. The competing methods are:

1) MKKM [13] extends the well-known fuzzy c-means algo-
rithm with multiple kernel learning framework, where the
weights among kernels are adjusted automatically.

2) RMKC [18] proposes to clean the noise of input kernels
and then aggregates them into a robust and low-rank
consensus one.

3) RMKKM [50] performs robust k-means with an appro-
priate consensus kernel which is learned from a linear
combination of input kernels. Meanwhile, all the variables
are encapsulated by the non-smooth L2,1-norm.

4) MKCMR [15] proposes a matrix-induced regularization to
reduce the redundancies among kernels and improve the
kernel diversity.

5) ONKC [51] finds that the representation capability of
consensus kernel is limited by decomposing it into a linear
weighted kernel combination. Thus, it locates the optimal
kernel in the neighborhood area.
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TABLE IV
PARAMETERS OF TRADITIONAL KERNEL AND CMK

6) LFAM [24] first computes the base partition of each data
view, then aligns them with a consensus partition, at last
applies k-means to obtain the labels.

In addition, we use the codes which are publicly available
on authors’ websites. Also, corresponding parameters are grid-
searched in the recommended ranges, and the best results are
reported. Moreover, we inherit the settings in Section V-B to
generate kernel matrices.

Since the aforementioned multiple kernel methods are of
cubic complexity, we only test them with the traditional kernels
and CMKs of BBC, BBCSport, CiteSeer, Cora and Movies.
Corresponding accuracies are presented in Table V. Three ob-
servations can be obtained as follows:

1) Multiple kernel methods on Gaussian, Linear and Cauchy
CMKs consistently outperform those on traditional ker-
nels. For Gaussian CMKs, about 2%, 4%, 21%, 26% and
3% accuracy improvements are observed, demonstrating
its effectiveness.

2) Although CMK shows weaker performances on a few
settings (such as BBCSport + Polynomial), the gaps are
relatively small. Meanwhile, CMK exceeds the traditional
kernels in most Polynomial and Sigmoid settings.

3) The results of multiple kernel methods establish a simi-
lar tendency with kernel quality evaluation in Table III,
especially for the decreases of Linear CMK on Movies,
Polynomial CMK on BBCSport, and Sigmoid CMK on
BBCSport. This may be improved by adopting other op-
timization strategies.

Overall, CMK generation paradigm can effectively promote
the performance of downstream tasks. Furthermore, the NMI
and Purity values follow a similar trend and are presented in
Appendix due to space limit.

D. CMK: Insights of Model Building

In this section, we explore two extra properties of the CMK
generation paradigm in the kernel learning process. Specifically,
we apply kernel k-means on the generated kernels and record
corresponding performances by epoch. For ease of expression,
performance of the average Gaussian CMK on BBC, along with
the loss value, is shown on the left of Fig. 2. It can be observed
that the loss value continuously decreases in the training process.
Meanwhile, accuracy, NMI, and purity increase with an opposite
tendency. We can conclude that minimizing the loss function
helps improve the kernel quality, demonstrating the consistency
between loss design and our motivation.

We also visualize the differences among kernels and latent
representations at each epoch in the middle of Fig. 2. Similarly,
Gaussian CMK on BBC is taken for an instance. We can discover
that their differences dramatically drop from the top, then remain
stable at constants, which can be explained in two-folds:

1) The decrease illustrates that minimizing the CMK
loss motivates mapping functions to push the la-
tent representations of different data views towards a
consensus.

2) The stability at constants demonstrates that the learned
latent representations keep view-specific information.

The decrease and stability are two consistent, instead of oppo-
site, concepts in multi-view learning. In the fusion of multi-view
data, we expect to not only enhance discriminative information
of the shared part, but also encourage each view to hold view-
specific information as a supplement for the shared. Results
on BBC in Fig. 2 well achieve this expectation, indicating an
effective learning state.

One potential problem of CMK may be that CMK can overfit
on small-scale datasets. To further analyze this risk, we plot
the kernel and representation differences of Gaussian CMK
on BBCSport (shown on the right of Fig. 2). We observe that
the differences decrease to zero. This means that the mapping
functions encode multiple data views into the same latent repre-
sentations, failing to balance the learning of shared information
and the preservation of view-specific information, as discussed
in Section V-D. But it is noteworthy that CMK outperforms
traditional kernels even in this setting, as shown in Tables III
and V. We leave the more detailed study of this problem to
future work.

We also visualize the Gaussian CMKs on the 1st view of BBC
dataset before 100 epochs in Fig. 3. Since the element of CMK
measures the similarity between latent data representations, we
can see that the cluster structure of data samples are gradually
enhanced along with model learning, verifying the effectiveness
of CMK design.

E. CMKKM: Performance Improvement

To validate the benefits of jointly conducting CMK generation
and kernel clustering (�c and �K in (34)), we compare the
accuracies between CMKKM and CMK+ in Table VI. Note
that CMK+ refers to conducting kernel k -means on average
Gaussian CMK, which differs from CMKKM only at whether
MKKM loss �K are employed in optimization. It can be seen
that CMKKM outperforms CMK+ by 1.09%, 3.87%, 6.88%,
6.17% and 3.24% on five benchmark datasets, respectively.
This ablation study well verifies our proposal of CMKKM and
contrastive multi-view clustering framework.

Nevertheless, we compare the experiment results of CMKKM
with that of six representative MKC methods. It can be observed
in Table VI that CMKKM exceeds the best of comparative
methods by 3.28%, 6.07%, 14.31%, 22.04% and 4.05%, demon-
strating its effectiveness. By the way, CMK+ also achieves
promising results compared with the nine methods, which well
illustrates the quality improvement of CMK.
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Fig. 2. Temporary measurements in model building, including loss value, performances, kernel difference and representation difference, by the example of
Gaussian CMK on BBC and BBCSport, respectively.

TABLE V
ACCURACY COMPARISON OF TRADITIONAL KERNEL AND CMK ON CLASSICAL MULTIPLE KERNEL METHODS

F. CMKKM: Insights of Model Building

By exploring the phenomenons in CMKKM model building,
we, in the following, try to explain why unifying CMK gen-
eration with MKC task can help improve the clustering perfor-
mance. In specific, two temporary measurements, including loss
value and accuracy, are recorded in CMKKM optimization and

the ones on BBC and CiteSeer are shown in Fig. 5. The model
building is separated into two stages, i.e., CMK generation of
the first 100 epochs (minimizing only �c in (34)) and CMKKM
model learning of the last 200 epochs (minimizing both �c and
�Kin (34)), corresponding to line 1 and line 2-12 in Algorithm
2, respectively.
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Fig. 3. Visualization of the Gaussian CMK on the 1st view of BBC dataset in the learning process before 100 epochs.

TABLE VI
ACCURACY COMPARISON AMONG CLASSICAL MKC METHODS, CMK+ AND CMKKM

Fig. 4. Accuracy variations respect to the dimension d of latent representations. The solid line represents different CMK types, while the black dotted line refers
to the best result of traditional kernels.

From the subplot of BBC, we can see CMK loss �c decreases
dramatically at first, and then keep stable in the first 100 epochs.
At the same time, the accuracy rises to the top at around 40th
epoch. These validate our proposal that minimizing the CMK
loss can help improve the quality of resultant kernels. Also,
two more observations are obtained: 1) The accuracy decreases
from 40th to 100th epoch; 2) The MKKM loss �K first falls at a
large scale but then increases gradually. The two points illustrate
that minimizing the CMK loss blindly would result in the kernel
quality loss. When imposing MKKM loss on optimization in the
last 200 epochs, it drops quickly. Meanwhile, the CMK loss rises
slowly and keeps stable at last. So does the accuracy, indicating
the MKKM loss can help improve kernel quality. Moreover, the
results on CiteSeer share similar observations with that on BBC,
but one can observe the accuracy improvement resulting from
MKKM loss more clearly.

Overall, it can be concluded that CMK generation (minimiz-
ing CMK loss �c) and MKC task (minimizing MKKM loss �K)

are two independent but supplementary processes to each other.
Jointly optimizing them in a unified framework would achieve
an ideal learning state, leading to promising performance.

G. Parameter Analysis

We conduct an ablation study on the dimension of the latent
representation zvi to explore its effect on kernel quality. Keeping
the learning rate constant (i.e., α = 1.0), we vary the dimension
from22 to29. As a result, performances on five types of CMK are
obtained and the average accuracies are plotted in Fig. 4. Note
that the black dotted line represents the best result achieved
by traditional kernels. It can be seen that the accuracy starts
increasing from a relatively low position. Especially, Polynomial
CMK gets an error on Cora when the dimension is set to 4. This
is caused by kernel k-means only separating the data into less
than 7 clusters, contradictory to the ground truth. Meanwhile,
all types of CMK increase dramatically and then stay relatively
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TABLE VII
ACCURACY COMPARISON OF CMK (EVALUATING WITH KERNEL k-MEANS) ON THE 1ST VIEW OF BBC DATASET

Fig. 5. Temporary measurements in model building, including loss value and
performances, by the example of Contrastive Multiple Kernel k-means with
Gaussian CMK on BBC and CiteSeer, respectively. The dashed line indicates
corresponding loss is plotted for better understanding but not employed in the
optimization.

stable at wide ranges. Nevertheless, we observe that CMK
outperforms the best traditional kernel when the dimension is
larger than 32. Therefore, it can be concluded that the proposed
paradigm is able to generate kernels of high quality even with a
large dimension of the latent representation hv

i . We recommend
setting the dimension to 128 or larger. At the same time, CMK
establishes a stable quality improvement on traditional kernels,
verifying its effectiveness again.

By grid-searching the epoch number and learning rate, we
present the accuracy results in Table VIII. It can be seen that both
the CMK and CMKKM models achieve better performances
with a larger training epoch number. Meanwhile, a large or
small learning rate results in a visible performance decrease. The
NMI and Purity results follow a similar trend and are shown in
Appendix. Therefore, we recommend setting the learning rate,
the epoch number of CMK and CMKKM models to 1.0, 150
and 450.

VI. DISCUSSION

In this section, we first discuss the connection and differences
between the proposed CMK loss and the widely-used contrastive
loss [28], [35] as follows.

TABLE VIII
ACCURACY COMPARISON OF CMK (EVALUATING WITH KERNEL k-MEANS)

AND CMKKM ON BBC DATASET

Connection. Disregarding of the generation method of la-
tent representation zvi , the contrastive loss in the Normalized
Temperature-scaled Cross Entropy (NT-Xent) form is a spe-
cial case of the proposed Linear CMK loss, where both of
them intend to maximize the similarities between positive pairs
and minimize those between negative pairs. When limiting the
view number V of the proposed CMK loss in (10) to 2, it is
obvious that

Eq. (10) = − log
exp(kz(z

v
i , z

v′
i ))∑

j,v′′∈Ai,v
exp(kz(zvi , z

v′′
j ))

= − log
exp(kz(zi, zj(i)))∑2N

k=1 1k �=i exp(kz(zi, zk))
, (41)

where the first column adopts zvi and zv
′

i to represent the positive
sample pair, while the second uses zi and zj(i) to do so. Never-
theless, from Table I of the manuscript,kz(xi,xj) = ax�

i xj + c
for the linear CMK, resulting in

Eq. (41) = − log
exp(az�i zj(i) + c)∑2N

k=1 1k �=i exp(az�i zj(i) + c)

= − log
exp(az�i zj(i))∑2N

k=1 1k �=i exp(az�i zj(i))
. (42)
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By setting a = 1/τ , we can get

Eq. (42) = − log
exp(z�i zj(i)/τ)∑2N

k=1 1k �=i exp(z�i zj(i)/τ)

= − log
exp(sim(zi, zj(i))/τ)∑2N

k=1 1k �=i exp(sim(zi, zk)/τ)
(43)

where sim(xi,xj) = x�
i xj/‖xi‖‖xj‖, and the last step holds

for zi is normalized in the proposed CMK. We can see (43) is
exactly the contrastive loss of [28], [35].

Difference. We identify the novelty of the proposed CMK loss
from three aspects:

1) Motivation. The contrastive loss of [28], [35] is designed
to learn discriminative representations of images, while
CMK tends to improve the kernel quality of multi-view
data (the output is corresponding kernel matrices), which
is novel in kernel learning but ignored by existing re-
searches.

2) Loss design. The method [28], [35] is partially limited by
the finite loss functions, such as NT-Xent, Margin Triplet,
etc. Meanwhile, the proposed CMK loss is more flexible,
where all types of kernel functions can be integrated by
simply instancing kz(·, ·). This also makes it compatible
with the literature of kernel theory, such as kernel learning,
kernel approximation, etc.

3) Encoding structure. Contrastive learning proposes to en-
coding images with an encoder f(·) and subsequent pro-
jection head g(·). However, it is based on images and not
practical for data of vectors. Therefore, CMK simplifies
the encoding design and projects multi-view data with V
independent weights {Wv}Vv=1.

Nevertheless, we explore the necessity of the normalization
of latent representations in (5). By removing the normalization,
we obtain the experiment results in Table VII. It can be observed
that the CMK generation paradigm without normalization often
reports an error, especially when learning rate is bigger than
0.01 or Polynomial and Cauchy kernel functions are adopted.
In such cases, we find the CMK’s values are always “NaN” or
“Inf,” illustrating a trivial solution. Meanwhile, for Gaussian,
Linear and Sigmoid CMK generation paradigms with learning
rate smaller than 0.01, the accuracies decrease rapidly once the
normalization is removed. In sum, the normalization is essential
in the proposed CMK.

VII. CONCLUSION

Current multiple kernel learning methods compute kernels
independently for each data view, ignoring the complementary
information across views. We propose the Contrastive Multi-
view Kernel generation paradigm, which integrates the views
into a quality kernel with a high concordance across views while
ensuring their diversity and heterogeneity. The experiments
show that CMK generates more quality kernels than traditional
methods. We also propose a Contrastive Multi-view Clustering
framework and instantiate it with Multiple Kernel k-means,

achieving promising performance. To our best knowledge, this
is the first attempt to explore kernel generation and contrastive
learning in multi-view setting, providing a new direction for
future research.
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