
Image Representation Learning by
Transformation Regression

Xifeng Guo, Jiyuan Liu*, Sihang Zhou, En Zhu*
PRMI Group, College of Computer

National University of Defense Technology
Changsha 410073, China

Email: guoxifeng1990@163.com

Shihao Dong
College of Mathematics and Computer Science

Zhejiang Normal University
Jinhua 321004, China

Email: 1274149231@qq.com

Abstract—Self-supervised learning is a thriving research
direction since it can relieve the burden of human labeling
for machine learning by seeking for supervision from data
instead of human annotation. Although demonstrating promis-
ing performance in various applications, we observe that the
existing methods usually model the auxiliary learning tasks
as classification tasks with finite discrete labels, leading to
insufficient supervisory signals, which in turn restricts the
representation quality. In this paper, to solve the above
problem and make full use of the supervision from data, we
design a regression model to predict the continuous parameters
of a group of transformations, i.e., image rotation, translation,
and scaling. Surprisingly, this naive modification stimulates
tremendous potential from data and the resulting supervi-
sory signal has largely improved the performance of image
representation learning. Extensive experiments on four image
datasets, including CIFAR10, CIFAR100, STL10, and SVHN,
indicate that our proposed algorithm outperforms the state-
of-the-art unsupervised learning methods by a large margin
in terms of classification accuracy. Crucially, we find that
with our proposed training mechanism as an initialization, the
performance of the existing state-of-the-art classification deep
architectures can be preferably improved.

I. Introduction
Recently, deep neural networks, especially Convolu-

tional Neural Networks (CNNs), have witnessed tremen-
dous progress on many computer vision tasks, such as
image classification, segmentation and object detection.
With the guidance of human annotations, the existing
deep neural networks can already achieve satisfactory per-
formance in many applications like face recognition, dis-
ease diagnose, etc. However, the success of these methods
largely relies on massive amount of manually labeled data,
which is expensive and impracticable to scale on the vast
amount of visual data that are available today. Moreover,
in some fields, like medical care and astronomy, only
domain experts are able to provide reliable annotations,
making it impossible to collect a large number of labels.
To this end, unsupervised learning techniques, especially
self-supervised methods, are becoming an increasingly
important research direction.

Existing self-supervised learning methods usually define
a label free surrogate task to provide a pretext super-
vision signal for feature learning. For example, Auto-
Encoder (AE) [1] targets at reconstructing original data

by minimizing the error between network output and
corresponding data. Variational Auto-Encoder (VAE) [2]
and Generative Adversarial Network (GAN) [3] are also
taking the data content as supervision, though they
have very different objectives. These methods focus too
much on pixel details and thus are hard to learn high-
level semantic representation. Some methods apply many
groups of transformations to the original data and teach
the CNN model to recognize which group the input data
comes from. Fundamentally, they usually construct a
classification task with finite discrete labels, resulting in
insufficient supervisory signals, which in turn harms the
performance of representation learning.

To overcome the mentioned problem, we propose a
regression-based learning protocol which predicts contin-
uous parameters of transformations, e.g, image rotation,
translation, and scaling. Specifically, we apply a group of
transformations with continuous parameters to the input
image and can get infinite new images, theoretically. We
expect a neural network to be fed a transformed image
with parameters Θ and output Θ. In other words, the
neural network is asked to approximate the underling
composition function of different types of transformations
by fitting continuously transformed image data. In this
way, the auxiliary supervisory signals are infinite and
thereby help the neural network learn a better repre-
sentation. It is also convenient to incorporate new type
of transformations, by simply adding a new neuron to
the output layer. In contrast, those classification-based
self-supervised representation learning methods require
adding more output neurons according to the sampling
step during discretization. We perform classification task
on CIFAR10, CIFAR100, STL10, and SVHN, which are
all widely used in representation learning community, by
using the feature representation learned by our proposed
transformation regression. The result shows that our
method outperforms other self-supervised representation
learning methods and sets new state-of-the-art perfor-
mance on all benchmarks. We also show that our model
can be used for initialization of the classification model to
further improve its performance.

Our main contributions lie in three aspects as follows.



• This is the first work to create sufficient auxiliary
supervisory signals by regressing continuous trans-
formation parameters.

• We achieve the state-of-the-art performance on four
popular image benchmark datasets by performing
classification on the representation learned through
our proposed transformation regression method.

• Experimental results validate that taking our pro-
posed training mechanism as an initialization, the
performance of prior state-of-the-art deep classifica-
tion models can be further improved.

II. Related Work
Current self-supervised representation learning methods

can be roughly separated into two categories, i.e. content
based and manipulation based representation learning.

A. Content based Representation Learning
The content based representation learning methods take

advantage of data itself as the supervisory signal. They are
also known as conventional unsupervised representation
learning. Representative methods include Auto-Encoder
(AE) [1], Variational Auto-Encoder (VAE) [2], and Gen-
erative Adversarial Network (GAN) [3].

Vanilla AE is designed as two parts, an encoder and
a decoder, which are symmetric in most cases. It learns
feature representation by minimizing the error between
original input image and the corresponding reconstructed
one. But it tends to easily overfit the data when the neural
network has enough capacity. To overcome this problem
and improve the robustness, additional restriction is ap-
plied on the input data or network model. For example,
stacked autoencoder [4] uses the reconstruction loss to
train the AE layer by layer. Denoising autoencoder [5] adds
noise to input data and force the network to reconstruct
the clean data. Sparse autoencoder [6] constrains the
embedding layer to be sparse by adding an l1 penalty.
And contractive autoencoder [7] makes representation less
sensitive to small variations in its training dataset by
adding a regularizer, or penalty term, to the reconstruction
loss.

VAE is a generative unsupervised learning model which
consists of a classical auto-encoder component and a
Bayesian regularization over the latent space, forcing
the posterior of latent representation matches a prior
distribution [8]. VAE and its variants have been widely
applied to various representation learning tasks, including
image understanding [9], [10] and sentence modeling [11].

Meanwhile, GAN [3] is also a popular and effective tech-
nique for unsupervised representation learning, though
it is well known as generative model that can generate
realistic images. Radford et al. [12] propose Deep Convo-
lutional GAN (DCGAN) that largely improves its ability
of learning representation. Tran et al. [13] propose the
Disentangled Representation learning GAN (DR-GAN) to
learn an interpretable and discriminative representation.

InfoGAN [14] improves the interpretability of the repre-
sentation by maximizing the mutual information between
a subset of latent variables and the observations.

The underlying representations from aforementioned
models are further adopted for image classification and
object detection tasks and shown to be robust and effec-
tive. However, the main drawback is that they put too
much emphasis on pixel details. As a result, there exists
a non-ignorable gap with most supervised approaches by
using the extracted representations on classification task.

B. Manipulation based Representation Learning

The manipulation based representation learning tech-
niques define a group of manipulations (e.g., image ro-
tation, color jitter, and inpainting) employed on images
and generate corresponding labels. For example, Gidaris
et al. [15] apply four rotations (0◦, 90◦, 180◦, and 270◦)
to images and label them with class 1 to 4. It is worth
noting that the labels can be generated automatically by
following the pre-specified rules, which is a key distinction
from supervised methods. Doersch et al. [16] randomly
sample patch pairs from single image and feed them into
a convolutional network, so as to predict the relative
position within pairs in a supervised manner. Then,
the captured image representations are tested on Pascal
VOC 2011 with clustering methods, illustrating their
effectiveness. The discriminative image features can also
be extracted by training deep networks to colorize the
gray scale images, which is well demonstrated in [17],
[18]. Agrawal et al. [19] use the moving objects to train a
Convolutional Neural Network with their ego-motions as
the supervisory signal for feature learning. Norroozi and
Favaro [20] build a deep network to solve Jigsaw puzzles
as a pretext task without manual labeling and use the
extracted features to perform object classification, showing
a high quality performance. Huang et al. [21] adopt sample
neighborhood information to train a deep network model
so as to learn the underlying class decision boundaries at
the same time.

Our proposed method belongs to manipulation based
representation learning. Compared with content based
learning methods, it forces CNNs to capture the intrinsic
image structures by performing supervised learning to
predict geometric transformations of images, producing a
far more effective latent representation. At the same time,
manipulation based methods generate discrete labels for
representation learning, including certain amount of rota-
tion angles [15], relative positions[16], pixel color values
[17], etc. The disadvantage of this manner is that only
partial labels are considered. For example, four rotation
angles, i.e. 0, 90, 180, 270 degrees, are concerned in [15].
Our proposed method uses continuous rotation angles
from 0 to 360 degrees and predicting the accurate values
in regression manner. Continuous pixel translation and
scaling are also adopted at the same time. With far richer



…….
…….

…….

Input base block type I

base block type II base block type III

rotation=15
horizontal translation= -5 
vertical translation=10 
scaling=0.7

Block I Block II Block III

Input

Output Regression

Fig. 1. Our proposed neural network consists of three blocks apart from input and output layers. Inside each block are six same base blocks
which are made up with two convolutional layers. Before feeding images into the network, four transformations are performed in order to
get continuous labels. Finally, regression techniques are applied on labels and network output to calculate loss for back propagation.

image transformations are considered in learning process,
our model outperforms the state-of-the-art methods.

III. Transformation Regression Learning

This section elaborates the proposed transformation
regression learning method. First, we give some basic
definitions and our objective function. Then, we introduce
the model architecture in detail. At last, the optimization
algorithm is briefly presented.

A. Objective Function
Given an image space X and a data set with n samples

{xi}ni=1 ∈ X, our primary goal is training a convolutional
neural network F parameterized by W to map image
samples into a feature space Z where Z = {F(xi)}ni=1 can
be readily categorized. Due to the absence of annotations,
the network F is difficult to optimize. Although plenty of
end-to-end unsupervised learning techniques are presented
in recent literature, there is still a non-negligible gap in
performance compared with supervised approaches.

By following the common practice of self-supervised
learning, we construct a new dataset with automatically
generated labels, X̂ = {x̂i, yi}ni=1 , where x̂i = T (xi; yi) is
an affine transformed version of the original image xi with
affine transformation parameters yi. For simplicity, we
only select four types of affine transformations, including
rotation, horizontal translation, vertical translation, and
scaling, parameterized by θ1, θ2, θ3, and θ4, respectively.
Then we have yi = [θ1, θ2, θ3, θ4]

⊤
. And T (xi; yi) denotes

a new image that is obtained by applying these four
transformations to the original image xi. Take Figure
1 as an example, given a dog image xi, randomly
sampling a value of affine transformation parameters,
yi = [15,−5, 10, 0.7]⊤, resulting the affine transformed
image and the corresponding label, {x̂i, yi} . When yi
varies in a specified range, from one unlabeled image xi

we can generate many labeled samples {x̂i, yi} . Details
of the aforementioned affine transformations and their
parameters are provided in Table I.

TABLE I
Details of geometric transformations and their parameters

Transformation ti Range of θi Unit
Rotation [-180, 180] degree
Translation rightward [-10, 10] pixel
Translation downward [-10, 10] pixel
Scaling factor [0.5, 1.5] –

The neural network F can be trained in a supervised
way by using the generated labeled dataset X̂. The
corresponding objective is

min
W

1

n

n∑
i=1

L (F (x̂i;W) , yi) (1)

since the label yi contains continuous values, we choose
Mean Squared Error (MSE) to implement L. So our final
objective function is

min
W

1

n

n∑
i=1

∥F (T (xi; yi) ;W)− yi∥22 (2)

According to the above objective, the neural network F
is trying to predict the affine parameters yi from the affine
transformed image. To achieve this goal, the network has
to emphasize on the salient objects in the foreground and
learn their features. Because the background tends to only
include simple features like the sky, grass, desk, etc. So
the neural network F is expected to learn discriminative
features from the images after training by (2).

B. Architecture
The architecture is shown in Figure 1. The neural

network takes the affine transformed image x̂i as input
and outputs the predicted affine parameters. The Wide
Residual Network (WRN) [22] is chosen as the backbone
network of our architecture. As seen in the Figure 1, the
transformed images of size 3 × 32 × 32 are fed as input,
followed by a preprocessing layer of size 16 × 32 × 32.
Later, three neural network block, which is composed by
six same base block each, are adopted to extract the



TABLE II
Dataset statistics

#examples #training examples #testing examples #classes image size
CIFAR10 60,000 50,000 10,000 10 32× 32× 3
CIFAR100 60,000 50,000 10,000 100 32× 32× 3
STL10 13,000 10,000 3,000 10 32× 32× 3
SVHN 99,289 73,257 26,032 10 32× 32× 3

image latent representations. The base blocks of three
types respectively consist of two convolutional layers of
size 32× 32× 32, 64× 16× 16 and 128× 8× 8. Actually,
outputs of each block are all able to be regarded as
the latent representations of images, which means our
representation extracting network F can be set as the
part before any one of the three blocks, i.e. F1,F2,F3.
In the following section, representation effectiveness of
{Fi}3i=1 are thoroughly tested. The output layers are
fully connected and of size 128 and 4, respectively. In
our proposed network, the labels are continuous rather
than discrete values. Therefore, regression techniques are
performed.

C. Optimization
We initialize all weights by following [23]. The neural

network is trained in an end-to-end manner by using
Adam [24] optimizer with initial learning rate 0.001,
β1 = 0.9, and β2 = 0.999. The mini-batch size and epochs
are fixed to 256 and 200, respectively. The whole algorithm
is summarized in Algorithm 1.

Algorithm 1 Image Representation Learning Algorithm by
Transformation Regression
Input: Image Dataset X; Transformation function T (·, y)

Neural Network F(·,W).
Output: The parameters of the neural network W.

Initialize the neural network parameter W;
for t in 1 to T do

for i in 1 to n do
Random sample a value yi;
Apply transformation: x̂i = T (xi; yi).
Forward pass to get the output F (x̂i;W).

end for
Compute the loss L = 1

n

∑n
i=1 ∥F (x̂i;W)− yi∥22.

Update the W by gradient descent.
end for
return W.

IV. Experiments
In this section, we conduct an extensive evaluation of

our method on the most commonly used image datasets,
i.e., CIFAR10, CIFAR100, STL10, and SVHN. The clas-
sification task is chosen to evaluate the discriminability of
the representation learned by our transformation regres-
sion learning method. We also show the learned weights

TABLE III
Classification accuracy (%) of a multiple layer perceptron (MLP)
network on representations of different levels. The “Input” denotes

the original pixel level, while “Block_i” the representation
extracted from the ith block of the regression network for

i = 1, 2, 3, respectively.

Input Block_1 Block_2 Block_3
CIFAR10 66.84 81.37 84.88 76.16
CIFAR100 39.60 53.19 57.06 44.07
STL10-10k 54.20 68.53 72.67 64.33
STL10-100k 54.20 71.00 77.03 67.80

SVHN 82.25 92.29 94.28 91.52

TABLE IV
Classification accuracy (%) of a one-block network on

representations of different levels. The “Input” denotes the original
pixel level, while “Block_i” the representation extracted from the
ith block of the regression network for i = 1, 2, 3, respectively.

Input Block_1 Block_2 Block_3
CIFAR10 93.37 93.65 90.75 81.44
CIFAR100 70.84 71.42 65.69 49.01
STL10-10k 77.93 79.93 77.20 65.50
STL10-100k 77.93 81.03 79.60 67.17

SVHN 96.12 96.54 95.67 92.63

of our model can serve as an initialization for successive
classification model. The datasets are introduced as fol-
lows.

• CIFAR101: The dataset consists of 60,000 32 × 32
color images in 10 classes, with 6,000 images per class.
There are 50,000 training images and 10,000 test
images. It is widely used in deep learning community.

• CIFAR100: It is just like the CIFAR10, except it has
100 classes with each class containing 600 images.
There are 500 training images and 100 testing images
per class. The 100 classes in the CIFAR100 are
grouped into 20 superclasses. Each image comes with
a “fine” label (the class to which it belongs) and a
“coarse” label (the superclass to which it belongs).
We only use the fine label during evaluation.

• STL102: The STL10 dataset is an image recognition
dataset widely used for developing unsupervised fea-
ture learning algorithms. It contains 13,000 labeled
color images with size of 96 × 96 pixels, divided
uniformly into 10 classes, and 100,000 unlabeled

1http://www.cs.toronto.edu/ kriz/cifar.html
2https://cs.stanford.edu/ acoates/stl10



TABLE V
The result (accuracy in percentage) of training the same WRN as a classification model. The baseline is the random initialized WRN

trained by supervised classification loss. (Freeze, First block) denotes the classification accuracy of the WRN with the first bock initialized
by transformation regression and frozen during classification training. (Finetune, First block) is same with the supervised baseline except

the first block is initialized by transformation regression.

Supervised (baseline) First block First two blocks All blocks

CIFAR10 Freeze 94.92 94.20 90.76 51.00
Finetune 95.02 95.11 95.27

CIFAR100 Freeze 75.76 73.52 65.86 10.52
Finetune 75.88 76.60 76.19

STL10-10k Freeze 80.10 79.73 77.50 48.03
Finetune 82.17 82.40 83.93

STL10-100k Freeze 80.10 80.07 83.63 47.67
Finetune 83.47 82.70 84.10

SVHN Freeze 96.45 96.71 95.67 51.91
Finetune 96.62 96.58 96.60

images. The labeled images are divided into training
set with 10,000 images and testing set 3,000 images.
All images are resized to 32 × 32 pixels. STL10-
10k denotes training the regression model by 10,000
images and STL10-100k by 100,000 images.

• SVHN3: This is a real-world image dataset for devel-
oping machine learning algorithms. It has 10 classes,
representing digit “0” to “9”. There are 73,257 digits
for training, 26,032 digits for testing. Each image is
with size 32× 32 pixels.

All datasets are normalized by rescaling the elements to
[0,1] and then normalized to zero mean and unit standard
deviation. We only use the training set during regression.
A summary of dataset statistics is shown in Table II.

A. Evaluation Protocol

Our primary goal is to evaluate the discriminability
of the neural network F trained by optimizing (2). To
this end, we perform classification task on the features
extracted from different layers of the neural network and
use the classification accuracy as a metric to evaluate
the discriminability. Since the neural network is a wide
residual network (WRN) with 3 residual blocks, we extract
features from each block and report the corresponding
classification accuracy. As a baseline, we also report the
classification accuracy on the original pixel level feature.
We successively take a multiple layer perceptron (MLP)
and a deep convolutional neural network (CNN) as the
classifier. For all datasets except STL10-100k, both the
regression model and classifier are trained on the training
set but the former does not use the class labels and the
latter does. For STL10-100k dataset, the unlabeled dataset
with 100,000 images is used to train the regression model
and the training set with 13,000 images for the classifier.
After training the classifier, the classification accuracy on
the testing set is reported.

3http://ufldl.stanford.edu/housenumbers

B. MLP classification on Learned Representation

We first evaluate the quality of the representation
extracted from the WRN trained by transformation re-
gression loss via feeding representations of different levels
to a multiple layer perceptron (MLP) classifier. The MLP
classifier is composed of three fully connected layers which
have 400, 400, and K neurons, respectively, where K is
the number of classes. Each layer, except the output layer,
is followed by a batch normalization layer [25] and a ReLU
activation function. We use cross entropy loss and SGD
optimization algorithm with initial learning rate 0.1, Nes-
terov momentum 0.9, weight decay 0.0005. The learning
rate is multiplied by 0.2 at the 60th, 120th, and 160th
epoch, and the total number of training epochs is set to 200
with batch size 128. We only use random translation for
at most 4 pixels in each direction and random horizontal
flipping. The input data is preprocessed by first scaling the
pixel values to [0,1] and then normalizing to zero mean
and unit standard deviation.

The result is listed in Table III. The “Input” denotes
the original pixel level feature which serves as the baseline
classification performance. The representations extracted
from WRN lead to much higher classification accuracies
than the baseline. This validates that the proposed trans-
formation regression method can learn meaningful and
discriminative representation which favors simple MLP
classifier. When the representation goes deeper, the MLP
classification accuracy first increases and then decreases,
and the “Block_2” representation achieves the highest
performance. This result makes sense because the repre-
sentation from network layer close to the output is prone
to be specific to the transformation regression task and
hence are not suitable for classification. The representation
from shallower layer tends to be less task-specific and can
be used for general purpose. This experiment validates
that if the classifier at hand is not powerful enough, the
representation learned by transformation regression can
dramatically boost the classification performance.



C. CNN Classification on Learned Representation
We then perform classification by using a more powerful

deep convolutional neural network (CNN) which consists
of one WRN block, total 12 convolutional layers where
the first convolutional layer is with kernel size 3, stride 2,
and padding 1. The number of input and output channels
is cin and 128, respectively. The other layers are with
stride 1 and padding 1. Each layer is followed by a batch
normalization layer [26] and a ReLU activation function.
The last convolutional layer is followed by a global average
pooling layer and a fully connected layer. The number
of channels cin equals 3, 32, 64, and 128 for “Input”,
“Block_1”, “Block_2”, and “Block_3”, respectively. The
data augmentation, loss function and optimization param-
eters are same with the MLP classifier.

As shown in Table IV, the representation from the first
block achieves the highest classification accuracy on all
datasets. Due to the high capacity of the CNN classifier,
the classification on the input pixel level representation is
approaching the performance of the best supervised CNN
model. Therefore the “Input” is more like an upper-bound
baseline. However, our “Block_1” representation can still
slightly outperforms “Input” which indicates that the first
block of our regression model WRN can not only preserve
enough information for training the powerful CNN classi-
fier, but also enhance the discriminability of the learned
representation compared with the input pixels. The repre-
sentation from deeper block is less discriminative (losing
more discriminative information) than the shallower ones
since the accuracy drops gradually with representation
changing from “Block_1” to “Block_3”. This experiment
further validates the effectiveness and discriminability of
the representation learned by transformation regression
method.

D. Pretraining by Transformation Regression
By replacing the fully connected layer of the regression

model WRN with a K-neuron layer where K is the
number of classes, we can construct a classification model.
After training the WRN by transformation regression
loss, we copy the weights in the first block, the first
two blocks, and all blocks to the corresponding blocks
in classification WRN, respectively. The copied weights
can be frozen or finetuned during classification training.
We also report the baseline result of classification WRN
with all weights randomly initialized. In all settings, the
data augmentation and optimization parameters are all
same with that in the last subsection.

The results are shown in Table V. For CIFAR10 dataset,
the first row “Freeze” gives the classification results of
supervised training from scratch, copying and freezing the
first block, the first two blocks, and all blocks. Freezing the
first block leads to a comparable classification performance
to the baseline supervised model, despite the former
setting has only two blocks to train while the latter has
three. Freezing all blocks results in inferior classification

TABLE VI
Comparison with the state-of-the-art unsupervised learning

methods. The result marked by * is excepted from [15] and that
marked by † is from [21]. The other methods that have no markers
share the same network structure and optimization parameters.

CIFAR10 CIFAR100 STL10 SVHN
DCGAN∗ [12] 82.80 – – –
Split-Brain† [27] 67.10 39.00 – 77.30
Counting† [28] 50.90 18.20 – 63.40
AND† [21] 77.60 47.90 – 93.70
RotNet∗ [15] 91.16 – – –
TR (Ours) 93.65 71.42 79.93 96.54
Supervised 94.92 75.76 80.10 96.45

performance, because the representation close to the out-
put is task-specific. This again validates the effectiveness
of the first block representation learned by transformation
regression, which is consistent with the conclusion drawn
in the last subsection. The second row “Finetune” denotes
the classification results when the weights in the first
block, first two blocks, and all blocks are initialized by
the corresponding weights in the regression WRN. As
can be seen, using the pretrained weights by transfor-
mation regression can improve the baseline classification
performance. This improvement is more significant on
STL10 dataset where two to four percentage on accuracy
improvement over baseline is observed.

The training statistics on STL10-130k are recorded in
Figure 2. The losses of the pretrained model decrease faster
than the baseline random initialized supervised model and
reach the lower values. The classification accuracies are
changing in the similar trend. This validates that the
weights pretrained by transformation regression can used
for initialization of classification model.

E. Comparison with the State-of-the-art Methods
We compare our proposed transformation regression

learning method with state-of-the-art unsupervised learn-
ing methods including DCGAN [12], Split-Brain [27],
Counting [28], AND [21], and RotNet [15]. The result
of our method is the CNN classifier on the “Block_1”
representation as shown in Table IV.

As shown in Table VI, our transformation regression
(TR) method achieves the highest performance on all
datasets. The classification accuracy on the unsupervised
representation is approaching the supervised model. On
SVHN, our method can even slightly outperforms the
supervised model.

F. Ablation Study
Our regression WRN uses four types of transformations,

namely rotation, horizontal translation, vertical transla-
tion, and scaling. We test the CNN classification perfor-
mance on the first block when each type or combination of
these transformations is used for regression. As Table VII
shows, when the transformations are separately used (see



Fig. 2. The training statistics of the baseline supervised setting and all blocks pretrained setting on STL10. The classification WRN using
the pretrained weights converges faster than random weights and the final losses (including training loss and testing loss) are also lower.

the first, second, and forth rows), the performances are
very bad. This is because the neural network can easily
learn to predict the parameters of only one transformation
and thus tend to overfit the obvious pattern. For example,
if an image is rotated by 45 degrees, the neural network
can predict the angle by simply focusing on the edges.
However, combining two or three types of transformations
makes the network difficult to predict all transformation
parameters precisely only by observing simple patterns like
edges. Therefore, the network is forced to capture patterns
hiding in the image content in order to successfully infer
the transformation parameters. But the edge effect is still
harmful to the learning process. How to eliminate the edge
effect will be one of our future works. To conclude, this
analysis quantitatively validate our assumption that image
representation can be learned by regressing the parameters
of a combination of transformations.

V. Conclusion

We propose a new image representation learning method
by constructing a regression task whose target is to
predict the continuous parameters of some transforma-
tions applied to the input image. Extensive experiments
on various image datasets validate the effectiveness and
discriminability of representation learned by our proposed
transformation regression method. Our method not only
outperforms existing representation learning methods by

TABLE VII
Analysis on different transformations.

Rotation Translation Scaling ACC (%)
0 0 [0.5, 1.5] 90.97
0 [-10, 10] 1.0 87.97
0 [-10, 10] [0.5, 1.5] 91.48

[-180, 180] 0 1.0 87.99
[-180, 180] 0 [0.5, 1.5] 92.21
[-180, 180] [-10, 10] 1.0 93.24
[-180, 180] [-10, 10] [0.5, 1.5] 93.65

a large margin, setting new state-of-the-art performance
in terms of successive classification accuracy, but also
is comparable to the supervised model. Besides, it can
further improve the performance of supervised models by
initializing their weights with our training mechanism.
Future work includes: 1) exploring other types of trans-
formations like image flipping, cropping, and color jitter;
and 2) eliminating the edge effect when applying some
transformations like image rotation.

VI. Acknowledgment

This work was supported by the National Key R & D
Program of China 2018YFB1003203 and the National Nat-
ural Science Foundation of China (project no. 61773392
and 61672528).



References
[1] G. E. Hinton and R. Salakhutdinov, “Reducing the dimension-

ality of data with neural networks.” Science, vol. 313, no. 5786,
pp. 504–507, 2006.

[2] D. P. Kingma and M. Welling, “Auto-encoding variational
bayes,” in 2nd International Conference on Learning Represen-
tations (ICLR), 2014.

[3] I. J. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-
Farley, S. Ozair, A. C. Courville, and Y. Bengio, “Generative
adversarial nets,” in Advances in Neural Information Processing
Systems (NeurIPS), 2014, pp. 2672–2680.

[4] B. Du, W. Xiong, J. Wu, L. Zhang, L. Zhang, and D. Tao,
“Stacked convolutional denoising auto-encoders for feature rep-
resentation,” IEEE transactions on cybernetics, vol. 47, no. 4,
pp. 1017–1027, 2016.

[5] P. Vincent, H. Larochelle, Y. Bengio, and P. Manzagol, “Ex-
tracting and composing robust features with denoising autoen-
coders,” in Machine Learning, Proceedings of the Twenty-Fifth
International Conference (ICML 2008), Helsinki, Finland, June
5-9, 2008, 2008, pp. 1096–1103.

[6] A. Makhzani and B. J. Frey, “k-sparse autoencoders,” in 2nd
International Conference on Learning Representations (ICLR),
2014.

[7] S. Rifai, P. Vincent, X. Muller, X. Glorot, and Y. Bengio,
“Contractive auto-encoders: Explicit invariance during feature
extraction,” in Proceedings of the 28th International Conference
on Machine Learning, ICML 2011, Bellevue, Washington, USA,
June 28 - July 2, 2011, 2011, pp. 833–840.

[8] P. Goyal, Z. Hu, X. Liang, C. Wang, and E. P. Xing, “Nonpara-
metric variational auto-encoders for hierarchical representation
learning,” in Proceedings of the IEEE International Conference
on Computer Vision (ICCV), 2017, pp. 5094–5102.

[9] J. Walker, C. Doersch, A. Gupta, and M. Hebert, “An uncer-
tain future: Forecasting from static images using variational
autoencoders,” in European Conference on Computer Vision.
Springer, 2016, pp. 835–851.

[10] K. Gregor, I. Danihelka, A. Graves, D. J. Rezende, and D. Wier-
stra, “Draw: A recurrent neural network for image generation,”
arXiv preprint arXiv:1502.04623, 2015.

[11] Z. Hu, Z. Yang, X. Liang, R. Salakhutdinov, and E. P. Xing,
“Toward controlled generation of text,” in Proceedings of the
34th International Conference on Machine Learning-Volume 70.
JMLR. org, 2017, pp. 1587–1596.

[12] A. Radford, L. Metz, and S. Chintala, “Unsupervised represen-
tation learning with deep convolutional generative adversarial
networks,” in 4th International Conference on Learning Repre-
sentations (ICLR), 2016.

[13] L. Tran, X. Yin, and X. Liu, “Disentangled representation
learning gan for pose-invariant face recognition,” in Proceedings
of the IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), 2017, pp. 1415–1424.

[14] X. Chen, Y. Duan, R. Houthooft, J. Schulman, I. Sutskever,
and P. Abbeel, “Infogan: Interpretable representation learning
by information maximizing generative adversarial nets,” in
Advances in neural information processing systems (NeurIPS),
2016, pp. 2172–2180.

[15] S. Gidaris, P. Singh, and N. Komodakis, “Unsupervised rep-
resentation learning by predicting image rotations,” in 6th
International Conference on Learning Representations (ICLR),
2018.

[16] C. Doersch, A. Gupta, and A. A. Efros, “Unsupervised visual
representation learning by context prediction,” in Proceedings
of the IEEE International Conference on Computer Vision
(ICCV), 2015, pp. 1422–1430.

[17] G. Larsson, M. Maire, and G. Shakhnarovich, “Learning repre-
sentations for automatic colorization,” in European Conference
on Computer Vision (ECCV). Springer, 2016, pp. 577–593.

[18] R. Zhang, P. Isola, and A. A. Efros, “Colorful image coloriza-
tion,” in European conference on computer vision (ECCV).
Springer, 2016, pp. 649–666.

[19] P. Agrawal, J. Carreira, and J. Malik, “Learning to see by
moving,” in Proceedings of the IEEE International Conference
on Computer Vision (ICCV), 2015, pp. 37–45.

[20] M. Noroozi and P. Favaro, “Unsupervised learning of visual rep-
resentations by solving jigsaw puzzles,” in European Conference
on Computer Vision (ECCV). Springer, 2016, pp. 69–84.

[21] J. Huang, Q. Dong, S. Gong, and X. Zhu, “Unsupervised deep
learning by neighbourhood discovery,” in Proceedings of the
36th International Conference on Machine Learning (ICML),
2019, pp. 2849–2858.

[22] S. Zagoruyko and N. Komodakis, “Wide residual networks,”
in Proceedings of the British Machine Vision Conference 2016,
BMVC 2016, York, UK, September 19-22, 2016, 2016.

[23] K. He, X. Zhang, S. Ren, and J. Sun, “Delving deep into
rectifiers: Surpassing human-level performance on imagenet
classification,” in 2015 IEEE International Conference on Com-
puter Vision, ICCV 2015, Santiago, Chile, December 7-13, 2015,
2015, pp. 1026–1034.

[24] D. P. Kingma and J. Ba, “Adam: A method for stochastic
optimization,” arXiv preprint arXiv:1412.6980, 2014.

[25] S. Ioffe and C. Szegedy, “Batch normalization: Accelerating
deep network training by reducing internal covariate shift,” in
Proceedings of the 32nd International Conference on Machine
Learning (ICML), 2015, pp. 448–456.

[26] ——, “Batch normalization: Accelerating deep network train-
ing by reducing internal covariate shift,” arXiv preprint
arXiv:1502.03167, 2015.

[27] R. Zhang, P. Isola, and A. A. Efros, “Split-brain autoen-
coders: Unsupervised learning by cross-channel prediction,” in
IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), 2017, pp. 645–654.

[28] M. Noroozi, H. Pirsiavash, and P. Favaro, “Representation
learning by learning to count,” in IEEE International Confer-
ence on Computer Vision (ICCV), 2017, pp. 5899–5907.


