
Large-scale Multi-view Tensor Clustering with Implicit Linear Kernels

Jiyuan Liu1, Xinwang Liu1*, Chuankun Li2, Xinhang Wan1, Hao Tan1, Yi Zhang1, Weixuan Liang1

Qian Qu1, Yu Feng1, Renxiang Guan1, Ke Liang1

1 National University of Defense Technology, Changsha, Hunan, China. 410072.
2 North University of China, Taiyuan, Shanxi, China. 030051.

liujiyuan13@nudt.edu.cn, *Corresponding author

Abstract

Multi-view clustering is a long-standing hot topic in ma-
chine learning communities, due to its capability of inte-
grating data information from multiple sources and modal-
ities. By utilizing tensor Singular Value Decomposition (t-
SVD) technique with the tensor rotation trick, recent ad-
vances have achieved remarkable improvements on clus-
tering performance. However, we find this is attributed to
the inadvertent use of sequential information of sorted data
samples, i.e. inadvertent label use, which violates the un-
supervised learning setting. On the other hand, existing
large-scale approaches are mostly developed on the basis
of matrix factorization or anchor techniques, thereby fail
to consider the similarities among all data samples, pre-
venting from further performance improvement. To address
the above issues, we first analyze the tensor rotation trick
and recommend to remove it from tensor clustering. On
its basis, a novel large-scale multi-view tensor clustering
method is developed by incorporating the pair-wise simi-
larities with implicit linear kernel function. To solve the
resultant optimization problem, we design an efficient algo-
rithm of linear complexity. Moreover, extensive experiments
are conducted and corresponding results well support the
aforementioned finding and validate the effectiveness and
efficiency of the proposed method.

1. Introduction
With the rapid development of electrical device and in-
formation technology, the data is collected from multiple
sources with different modalities, which is widely known
as multi-view data. In literature, it refers to the multiple de-
scriptions of a same set of data samples which can be sep-
arated semantically. For instance, in the Alzheimer’s dis-
ease diagnosis, the doctor would probably collect data from
a series of medical tests, such as neurological examina-
tion, ElectroEncephaloGram (EEG), Computed Tomogra-
phy (CT) scan, etc. In this background, multi-view cluster-

ing is a representative of unsupervised learning paradigms
to deal with multi-view data and achieves promising perfor-
mance in recent years [13, 28–31, 43, 44, 46, 47, 52], since
it can enhance the consistent information while integrate the
complementary information of different data views. Apart
from the rich research interests in academic research, the
methods are also applied in numerous real-world scenarios,
such as Bioinformatics [24, 51], Geoscience [6], Internet of
Things [9], etc.

Recently, a volume of multi-view clustering methods
employ tensor techniques to utilize the high-order corre-
lations among different data views, which is annotated to
multi-view tensor clustering [5, 18, 19, 50]. In the pioneer
research, a tensor nuclear norm minimization constraint
is proposed on the basis of tensor-Singular Value Decom-
position (t-SVD) and imposed on the clustering objective
function, leading to remarkable performance improvements
[50]. Also, other constraints are developed based on t-SVD
subsequently, such as the popular weighted tensor Schat-
ten p-norm minimization [10, 48, 49], enhanced tensor rank
minimization [16], etc. To deal with large-scale data, a vol-
ume of multi-view clustering methods aims to design algo-
rithms and corresponding optimization strategies of linear
complexity. Some of them are developed on the basis of
matrix factorization where the data is decomposed into two
parts, i.e. coefficient matrix and base matrix [8, 11, 14, 27].
On contrary, another branch of them reduces the computa-
tion complexity by building kernel matrix or similarity ma-
trix with sample anchors of limited numbers [15, 23].

Among the above methods, two drawbacks are observed
and severely limit the further development of multi-view
clustering. On one hand, almost all multi-view tensor clus-
tering approaches employ the tensor rotation trick, as shown
in Fig. 2, along with incorporating the t-SVD based con-
straints. Since t-SVD requires to adopt Fast Fourier Trans-
form (FFT) on the 3-rd dimension of target tensor, the data
sequential information is used inadvertently. Unfortunately,
the existing methods overlook this and perform clustering
on the data sorted in groups, thereby introducing the data
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Figure 1. Framework of the proposed large-scale multi-view tensor clustering method. For brevity, only three data views are presented
(similar is to any number of data views). Note that, the linear kernel matrices are not required to be computed explicitly. Meanwhile,
different from existing approaches, the tensor rotation trick is not employed on tensor H.
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Figure 2. The tensor rotation trick which can be implemented with
shiftdim function in MATLAB. Note that, N , D and V refer to
the sample number, dimension of data representation or anchor
number and view number, respectively. When tensor A is of size
N × N × V in subspace or spectral clustering framework [45],
tensor Ā is obtained in size V ×N ×N .

labels and violating the unsupervised learning setting. On
the other hand, existing large-scale approaches are mostly
developed on the basis of matrix factorization and anchor
techniques, thereby fail to consider the similarities among
all data samples, preventing from further performance im-
provement.

To address the above issues, we first analyze the ten-
sor rotation trick and recommend to remove it from ten-
sor clustering. On this basis, a novel Large-scale Multi-
view Tensor Clustering (LMTC) method, as presented in
Fig. 1, is developed by incorporating the pair-wise simi-
larity of data samples. In specific, with given multi-view
data, corresponding linear kernel matrices can be generated.
Note that, since the complexity is square to sample number,
they are not required to be computed explicitly. Then, the
latent data representations can be formulated by aligning
with the implicit kernels respect to each view. Meanwhile,
they are supposed to be stacked into a tensor and regularized
with the t-SVD based Tensor Nuclear Norm (t-TNN) con-
straint. Finally, the data can be categorized via concatenat-

ing the latent representations and applying classical cluster-
ing technique, such as k-means, etc. The above procedures
are modeled into a unified objective function. To solve the
resultant optimization problem, we design an efficient al-
gorithm of linear complexity. Moreover, extensive experi-
ments are conducted and corresponding results well support
the aforementioned finding and validate effectiveness of the
proposed LMTC method. Overall, the contributions can be
summarized as follows:
1) To the first attempt, we find the tensor rotation trick inad-

vertently invokes sequential information of sorted data
samples, thereby violates the unsupervised learning set-
ting. Since almost all existing multi-view tensor cluster-
ing methods do so, the finding will have a great impact.

2) A novel large-scale multi-view tensor clustering method
is proposed by removing the tensor rotation trick and
incorporating the pair-wise similarity of data samples.

3) We develop an optimization algorithm of linear com-
plexity to solve the proposed method. Also, extensive
experiments are conducted to validate its effectiveness
and efficiency.

2. Related work

2.1. Multi-view tensor clustering

Multi-view tensor clustering is an unsupervised learning
paradigm by employ tensor techniques to utilize the high-
order correlations among different data views [3, 5, 18, 19,
50]. In the pioneer research, Xie et al. construct a unified
tensor by computing and stacking the view-specific sub-
space representation matrices [50]. Then, they propose the
tensor nuclear norm minimization constraint by adopting
the well-known tensor-Singular Value Decomposition (t-
SVD) [18, 19], and impose it on the aforementioned tensor,
contributing to a novel t-SVD based multi-view subspace
clustering method. In experiments, it achieves remarkable
performance improvements on benchmarks and rapidly at-



tracts the interests of a large amount of multi-view cluster-
ing researchers. Apart from the subspace representation,
existing methods also generate the unified tensor with other
data representation matrices, such as latent representation
[4, 22], anchor graph [16, 49], etc. In addition, a large num-
ber of novel t-SVD based constraints are also developed.
For example, Gao et al. propose the weighted tensor Schat-
ten p-norm minimization by regularizing the larger singular
values shrink less to preserve the prominent information of
tensors [10]. Ji et al. formulate the enhanced tensor rank
minimization to uncover the local geometric structure in an-
chor representation tensor [16].

2.2. Large-scale multi-view clustering

In literature, a volume of multi-view clustering approaches
are proposed to deal with large-scale data by developing al-
gorithms and optimization strategies of linear complexity.
They can be roughly grouped into two categories. The first
category originates from the matrix factorization technique
in which the data is decomposed into two parts, i.e. coeffi-
cient matrix and base matrix [8, 11, 14, 27]. For example,
Liu et al. compute a set of coefficient matrices with each
corresponding to one data view and push them towards a
common consensus for further clustering task [8]. Gao et al.
assume that all data views share a consensus manifold and
only adopt one unique coefficient matrix to capture the un-
derlying clustering structure [11]. Moreover, the other cate-
gory proposes to reduce computation complexity by build-
ing anchor graphs with selecting a limited number of data
samples, such as [7, 15, 23, 36]. Nevertheless, tensor tech-
niques are also utilized in them [16, 22, 37, 41, 49]. For
instance, Li et al. propose the orthogonal non-negative ten-
sor factorization to exploit the within-view spatial structure
and between-view complementary information [22]. Xia et
al. propose a variance-based de-correlation anchor selec-
tion strategy for bipartite construction and employ the ten-
sor Schatten p-norm to exploit the inter-view similarity of
data samples [49].

3. Notation and preliminary
Before the proposed method, the necessary notations are in-
troduced in the following. Generally, the bold calligraphy
letter, e.g. A, is used for tensor, the bold upper case let-
ter, e.g. A, is used for matrix, the bold lower case letter,
e.g. a, is used for vector, while the normal letter and the
aforementioned letters with subscript index are used for el-
ement, such as a, Ai,j,···, Ai,j and ai. As well, the fiber
of a tensor refers to a 2-dimension section by fixing all but
two indices, while the slice of a tensor to a 1-dimension
section by fixing all but one index. Given a 3-way tensor
A ∈ RN1×N2×N3 , its mode-1, mode-2 and mode-3 fibers
are denoted to A(:, i, j), A(i, :, j) and A(i, j, :). At the
same time, its i-th horizontal, lateral and frontal slices are

Algorithm 1 Computation of t-SVD [19]
Input: Tensor A ∈ RN1×N2×N3

Output: Tensor U , S, V
1: Af = fft(A, 3);
2: for m = 1 : N3 do
3: [U,S,V] = SVD(A(m)

f );

4: U (m)
f = U, S(m)

f = S, V(m)
f = V;

5: end for
6: U = ifft(Uf , 3), S = ifft(Sf , 3), V = ifft(Vf , 3);

denoted to A(i, :, :), A(:, i, :) and A(:, :, i). For ease of ex-
pression, A(i) is used to represent A(:, :, i). Also, five more
tensor operations in [19] are used, including bcirc, bvec,
bvfold, bdiag and bdfold, and can be found in Appendix.
Moreover, to introduce t-SVD and t-TNN, the following
definitions should be clarified in advance.

Definition 1 (t-product) With given two arbitrary tensors
A ∈ RN1×N2×N3 and B ∈ RN2×N4×N3 , their t-product is
defined to

A ∗ B = fold(bcirc(A) · bvec(B)) (1)

whose size is N1 ×N4 ×N3.

Definition 2 (Orthogonal Tensor) A tensor A ∈
RN1×N2×N3 is orthogonal if

A⊤ ∗ A = A ∗ A⊤ = I, (2)

where A⊤ is the transposed tensor of size N2 × N1 × N3

and obtained by transposing the frontal slices of A then re-
versing the order of transposed frontal slices 2 through n.
Meanwhile, I is the identity tensor of size N2 × N2 × N3

whose first frontal slice is the identity matrix and the other
frontal slices are all zeros.

Definition 3 (f-diagonal Tensor) A tensor is f-diagonal if
each of its frontal slices is diagonal.

Definition 4 (tensor Singular Value Decomposition)
Given an arbitrary tensor A ∈ RN1×N2×N3 , the tensor
Singular Value Decomposition (t-SVD) is given as

A = U ∗ S ∗ V⊤, (3)

where U and V are orthogonal tensors of size N1×N1×N3

and N2 × N2 × N3, while S is f-diagonal tensor of size
N1 ×N2 ×N3 and ∗ refers to the tensor t-product.

With respect to Definition 3, Kilmer et al. also explore
its correlations to Singular Value Decomposition (SVD) in
Fourier domain and propose to compute it efficiently via
Algorithm 1. Note that, Af = fft(A, 3) refers to the fast
Fourier transform of tensor A along the 3-rd dimension,
while A = ifft(Af , 3) is the inverse operation.



Definition 5 (Tensor Nuclear Norm) Given an arbitrary
tensor A ∈ RN1×N2×N3 , the t-SVD based Tensor Nuclear
Norm (t-TNN) is given as

∥A∥⊛ =

min(N1,N2)∑
i=1

N3∑
k=1

|Sf (i, i, k)|. (4)

According to [19], t-TNN in Definition 5 is the tightest con-
vex relaxation to ℓ1-norm of the tensor multi-rank, thereby
achieves better performances than other norms in machine
learning tasks, such as tensor completion [26], etc.

4. Methodology
4.1. Inadvertent label use

As introduced in Section 2.1, existing multi-view ten-
sor clustering methods first construct the target tensor
by stacking the latent data representations [4, 22], self-
representation matrices [45], etc. Then, the tensor rotation
trick, as presented in Fig. 2, is applied on it along with
t-SVD based constraints to integrate the data clustering in-
formation of different views. For ease of expression, with
annotating the tensor and the trick to be A and shiftdim
function1, the rotated tensor can be computed by

Ā = shiftdim(A), (5)

where A is mostly of size D × N × V and N × N × V ,
while Ā of size V × D × N and V × N × N . Note that,
the 3-rd dimension of tensor Ā is always the number of data
samples.

According to Definiton 4, 5 and Alg. 1, it requires apply-
ing FFT on tensor Ā along the 3-rd dimension to compute
t-TNN ∥Ā∥⊛. Strictly, this can be written in mode-3 fiber,
i.e.

Āf (i, j, :) = fft(Ā(i, j, :)). (6)

where Āf (i, j, :) and Ā(i, j, :) are both of size N × 1. Nev-
ertheless, it is worth to note that fiber Ā(i, j, :) is composed
of N elements (similarity, feature, etc.) with each corre-
sponding to to a unique data sample. Since FFT is to project
a value sequence from the time domain to the frequency do-
main [38], Āf (i, j, :) encodes not only the value informa-
tion but also the sequential information of Ā(i, j, :).

In multi-view tensor clustering literature, almost all ap-
proaches directly use the public benchmarks, such as ORL
(please refer to Section 5.1), which are sorted by groups in
advance, but do not shuffle the data before feeding into their
clustering algorithms [16, 22, 33, 49]. Although remark-
able performances are achieved, they inadvertently invoke
the data sequential information (also annotated to inadver-
tent label use) in Eq. (6), hence violate the unsupervised

1The tensor rotation trick is implemented with shiftdim function in
MATLAB. Here we use the symbol directly.

learning setting. This can be validated by comparing their
performances on shuffled data with those on sorted data and
we provide corresponding experiment results in Section 4.1.

To address the aforementioned inadvertent label use
problem, there are two possible solutions: 1) removing the
tensor rotation trick; 2) adopting the tensor rotation trick but
shuffling the data in advance. Taking tensor A and Ā in Eq.
(5) for example, the former only needs O((V log V )DN) or
O((V log V )N2) complexity to compute the t-TNN, while
the latter requires O(V DN logN) or O(V N2 logN) com-
plexity which is at least logN times higher than the for-
mer. Therefore, we recommend to not use the tensor rota-
tion trick in future tensor clustering researches.

4.2. Objective function

In large-scale multi-view clustering literature, existing ap-
proaches are mostly developed on the basis of matrix fac-
torization or anchor techniques, thereby fail to consider the
similarities among all data samples, preventing from fur-
ther performance improvement. To address this issue, we
propose the LMTC method by incorporating the pair-wise
similarity with linear kernel function.

Given multi-view data {Xv}Vv=1 of K clusters in which
Xv ∈ RDv×N (V , N and Dv are the number of data views,
the number of samples and the dimension of v-th data view,
respectively), the linear kernel matrix of the v-th data view
can be written as

Kv = X⊤
v Xv, (7)

in which Kv ∈ RN×N and its (i, j)-th element is the pair-
wise similarity between the i-th sample and the j-th sample.
Assuming each data view corresponds to a low-rank mani-
fold, we can denote the latent representation of v-th view to
Hv . Also, the dimensions of all latent representations are
universally set to K×N . By following the research in [27],
each row of representation Hv are expected to be discrim-
inative from the others, which is formulated by seting the
latent representations orthogonal, i.e.

HvH
⊤
v = IK , (8)

where IK refers to the identity matrix of size K. Neverthe-
less, the latent representation Hv should be aligned with the
linear kernel matrices Kv of Eq. (7), which can be achieved
by maximizing the following

max
Hv

< Kv,H
⊤
v Hv >

∥Kv∥F · ∥H⊤
v Hv∥F

. (9)

Considering the orthogonal property of Hv in Eq. (8),
∥H⊤

v Hv∥F is a constant and Eq. (9) can be transformed
into

max
Hv

Tr(KvH
⊤
v Hv). (10)

Furthermore, we also stack all latent representations into a
unified tensor H ∈ RK×N×V and maximize its t-TNN to



capture the low-rank clustering structure underlying all data
views, i.e.

min
H

∥H∥⊛, (11)

where H = bvfold([H1;H2; · · · ;HV ]). Combining Eq.
(8), (10) and (11), we can obtain the following

min
{Hv}V

v=1

−
V∑

v=1

Tr(KvH
⊤
v Hv) + λ∥H∥⊛

s.t. HvH
⊤
v = IK ,

(12)

where λ is the trade-off parameter and should be set in ad-
vance. Since the matrix Kv requires the O(N2) computa-
tion and storage complexity, we do not calculate it explicitly
and get the objective function as

min
{Hv}V

v=1

−
V∑

v=1

Tr(X⊤
v XvH

⊤
v Hv) + λ∥H∥⊛

s.t. HvH
⊤
v = IK .

(13)

By optimizing Eq. (13), we can be obtain the feasible latent
representations of all data views. Then, the cluster assign-
ment is computed by applying the classical k-means on their
vertical concatenation.

4.3. Optimization

To solve the objective function of Eq. (13), we employ the
Augmented Lagrange Multiplier (ALM) [25] and design an
alternate optimization algorithm of linear complexity. By
introducing an auxiliary tensor variable G ∈ RK×N×V ,
corresponding unconstrained optimization problem can be
obtained as

L({Hv}Vv=1,G,W) = −
V∑

v=1

Tr(X⊤
v XvH

⊤
v Hv)

+λ∥G∥⊛+ < W, G −H > +
ρ

2
∥G −H∥2F

s.t. HvH
⊤
v = IK ,

(14)

where tensor W is the Lagrange multiplier and ρ represents
the penalty parameter adjusted along with optimization. On
this basis, the alternate optimization algorithm can be illus-
trated by the following three subproblems.

Hv-subproblem. With fixing the latent representations
{Hv′}Vv′=1,v′ ̸=v , tensor G and Lagrange multiplier W , the
problem of Eq. (14) can be reduced to

max
Hv

Tr(HvX
⊤
v XvH

⊤
v ) + Tr(H⊤

v C)

s.t. HvH
⊤
v = IK ,

(15)

in which
C = ρG(v) +W(v). (16)

Algorithm 2 Optimization of Hv-subproblem
Input: data Xv , matrix C and initial representation Hv

Output: representation Hv

1: ensure HvH
⊤
v = IK ;

2: repeat
3: compute M = X⊤

v XvH
⊤
v +C;

4: perform SVD on M, i.e. UΣV⊤ = M;
5: update Hv = VU⊤;
6: until convergent

Algorithm 3 Optimization algorithm of LMTC method
Input: multi-view data {Xv}Vv=1 and cluster number K
Output: cluster assignment

1: initialize {Hv}Vv=1 such that HvH
⊤
v = ID, G = 0,

W = 0, ρ = 10−5, ρmax = 1010, η = 2, δ1 = 10−5,
δ2 = 10−7 and t = 1;

2: while not convergent do
3: for v ∈ {1, 2, · · · , V } do
4: update latent representation Hv with Alg. 2;
5: end for
6: update tensor G with Eq. (18);
7: update Lagrange multiplier W with Eq. (21)
8: compute the objective value objt with Eq. (13);
9: check the convergence conditions:

objt − objt−1/objt ≤ δ1 and
∥G −H∥F ≤ δ2

10: update parameter ρ = min(ηρ, ρmax);
11: t = t+ 1;
12: end while
13: compute cluster assignment by applying k-means on

the concatenation of latent representations {Hv}Vv=1;

It is easy to find that Eq. (15) is a quadratic optimization
problem on the Stiefel manifold [35] and can be solved by
Alg. 2.

G-subproblem. With fixing the latent representations
{Hv}Vv=1, tensor G and Lagrange multiplier W , the prob-
lem of Eq. (14) can be formulated into

min
G

λ

ρ
∥G∥⊛ +

1

2
∥G − P∥2F . (17)

where P = H−W/ρ. By following Theorem 2 of [50], we
can obtain the solution that

G = ifft(Gf , 3) (18)

with v-th frontal slice of G(v)
f being

G(v)
f = U (v)

f Cρ,λ(S(v)
f )V(v)⊤

f , (19)



where

U (v)
f S(v)

f V(v)⊤
f = P(v)

f

Cρ,λ(S(v)
f ) = max{0, S(v)

f − λV/ρ}.
(20)

W-subproblem. By fixing the latent representations
{Hv}Vv=1, tensor H and tensor G, the Lagrange multiplier
W can be updated via

W = W + ρ(G −H). (21)

Overall, the complete optimization algorithm of LMTC
method is summarized in Alg. 3.

4.4. Computation complexity

In the following, computation complexity of the proposed
LMTC method is analyzed by each subproblem.
1) Hv-subproblem. In the computation of matrix M,

X⊤
v XvH

⊤
v can be efficiently calculated as X⊤

v (XvH
⊤
v ),

hence the O(KDvN) complexity is required. Also, the
SVD on matrix M and the update of Hv both needs
O(K2N) complexity.

2) G-subproblem. The tensor P is transformed to Pf

by applying FFT along the 3-rd dimension, leading to
O((V log V )KN) complexity. So does the inverse FFT
from tensor Gf to G. Meanwhile, the SVD on matrix
P(v)
f and the computation of matrix G(v)

f is of O(K2N)
complexity.

3) W-subproblem. The computation of Eq. (21) only con-
sists of tensor additions of size K ×N × V , resulting in
the O(V KN) complexity.

To be summarized, assuming t iterations are required to
converge, the optimization algorithm of LMTC method is
of O(tN) computation complexity, which is linear to the
number of data samples.

5. Experiment
5.1. Setting

In the following experiments, we test the proposed LMTC
method on seven popular benchmark datasets, including
ORL [39], HW [42], BDGP [40], ALOI [12], DryBean [20],
AwA [21] and YtVideo [34], whose specifics can be found
in Table 1. Meanwhile, the proposed LMTC method is
also compared with ten classic and novel large-scale multi-
view clustering approaches, including RMKC [2], BMVC
[53], LMSC [17], OPMC [27], EOMSC [32], MCHBG
[54], ASR-ETR [16], S2MVTC [33], TBGL [49] and Orth-
NTF [22]. To ensure comparison fairness, the aforemen-
tioned comparative approaches are all of linear complex-
ity to the number of data samples and the latter four are
specifically chosen from researches in last three years which
also leverage the t-SVD based tensor techniques to improve

Table 1. Details of the used benchmark datasets.

Dataset Number of
Samples Views Clusters

ORL 400 3 40
HW 2000 6 10
BDGP 2500 3 5
ALOI 10800 4 100
DryBean 13611 2 7
AwA 30475 6 50
YtVideo 101499 5 31

the clustering performance. Nevertheless, we directly run
their codes publicly available at the authors’ websites with-
out further revision for reproduction. Note that, the data
samples are shuffled to remove the effect of inadvertent
label use by default. In addition, we grid-search the pa-
rameters recommended in corresponding papers and report
the best. So do the proposed LMTC method with setting
the parameter λ in [10−10, 10−9, · · · 105]. By following
the multi-view clustering literature, three widely-used met-
rics, i.e. Accuracy (ACC), Normalized Mutual Information
(NMI) and Purity, are adopted to evaluate the clustering re-
sults. Furthermore, the methods are executed multiple times
to remove randomness and their averages are presented.
Additionally, in the following tables, Error indicates corre-
sponding algorithm terminates with errors, while OT (Out
of Time) and OM (Out of Memory) refers to consequences
of excedding the maximal time limit and computing mem-
ory, respectively. By the way, the code of LMTC is released
on https://github.com/liujiyuan13/LMTC-
code_release.

5.2. Performance comparison

To validate effectiveness of the proposed LMTC method,
we test it on seven benchmarks and compare the results with
those of the completing ones in Table 2. It can be observed
that the proposed LMTC method requires to set 1 parame-
ter before computing the clustering results. In comparison,
BMVC, LMSC, EOMSC, MCHBG, ASR-ETR, S2MVTC,
TBGL and Orth-NTF are supposed to set 6, 2, 2, 3, 4, 3,
5 and 3 parameters respectively. Since multi-view cluster-
ing is an unsupervised learning paradigm which lacks of
supervisory signals to tune parameters and parameters are
mostly set manually based on experience, a satisfying per-
formance is hard to guarantee with more parameters. Al-
though OPMC is free of parameter and RMKC only has 1
parameter, their clustering performances are far worse than
those of the proposed LMTC. Besides, OPMC, compared
with LMTC, takes nearly 10× to 20× time to group the
data into categories, as shown in Table 3.

As for clustering performance comparison, the pro-

https://github.com/liujiyuan13/LMTC-code_release
https://github.com/liujiyuan13/LMTC-code_release


Table 2. Performance comparison between the proposed LMTC method and completing approaches in literature. Note that, Param. is
short for Parameter number. In addition, the best and second-best results are marked in bold and with underline, respectively.

Dataset RMKC BMVC LMSC OPMC EOMSC MCHBG ASR-ETR S2MVTC TBGL Orth-NTF LMTC
Param. 1 6 2 0 2 3 4 3 5 3 1

ACC
ORL 57.35 57.25 59.00 56.00 62.25 66.25 82.75 Error 57.05 39.70 82.97
HW 70.43 86.40 92.10 87.51 76.00 85.40 87.15 57.15 75.64 66.32 94.00
BDGP 49.63 32.00 45.00 50.69 42.08 28.12 50.08 31.56 OT Error 54.81
ALOI 43.12 53.80 65.56 51.47 23.76 60.67 57.98 55.84 OT 40.77 69.07
DryBean 55.24 50.45 70.60 47.63 60.23 68.25 72.07 49.14 OT 28.52 74.80
AwA 9.01 10.45 8.18 9.40 8.72 OM 9.41 6.62 OT 4.45 10.65
YtVideo 12.38 19.41 17.25 18.29 26.66 OM 17.05 11.25 OT OT 25.31

NMI
ORL 75.53 72.19 78.91 74.58 88.15 75.08 90.98 Error 70.15 57.40 91.60
HW 70.71 84.03 86.49 81.19 82.08 88.08 76.75 64.40 70.39 58.15 87.12
BDGP 25.69 8.20 24.57 35.37 14.59 3.52 23.85 7.44 OT Error 32.84
ALOI 47.21 53.87 77.34 69.73 58.26 72.90 76.08 67.86 OT 51.83 79.79
DryBean 47.16 37.30 57.00 40.33 53.23 59.68 61.20 38.16 OT 8.58 63.19
AwA 11.16 12.30 9.03 11.95 10.10 OM 10.91 5.88 OT 2.93 12.31
YtVideo 10.17 15.80 14.08 17.68 0.24 OM 1.65 8.84 OT OT 22.26

Purity
ORL 61.20 60.00 65.50 60.75 80.12 70.25 84.50 Error 63.45 43.15 85.05
HW 73.99 86.40 92.10 87.51 76.20 87.65 87.15 63.85 76.00 68.15 94.00
BDGP 50.57 33.88 45.96 53.27 42.08 28.20 50.08 33.40 OT Error 56.73
ALOI 49.56 52.45 69.01 53.41 24.82 63.89 61.13 56.92 OT 43.00 71.11
DryBean 59.56 57.17 72.00 56.66 61.65 68.78 74.23 56.26 OT 34.02 77.68
AwA 11.06 12.19 10.03 11.49 9.62 OM 11.55 7.29 OT 5.99 12.45
YtVideo 26.87 30.78 32.25 30.04 26.68 OM 26.64 27.01 OT OT 35.07

Table 3. Time consumptions of the proposed LMTC method and completing approaches in literature. Note that, the time is in seconds.

Dataset RMKC BMVC LMSC OPMC EOMSC MCHBG ASR-ETR S2MVTC TBGL Orth-NTF LMTC

ORL 5.72 0.55 9.18 173.38 8.56 3.85 36.52 Error 26.48 2.66 10.55
HW 11.02 3.81 13.37 22.74 1.44 37.91 6.68 6.88 1616.79 13.65 2.91
BDGP 1.10 1.61 5.62 95.27 2.05 30.59 15.58 2.35 OT Error 3.90
ALOI 8914.13 17.50 67.80 395.30 42.98 1955.45 187.73 7.36 OT 2559.52 353.87
DryBean 2.57 3.24 22.24 79.74 40.51 5530.91 10.20 8.94 OT 162.51 5.18
AwA 6830.57 68.90 2379.84 48190.69 326.52 OM 2460.72 82.49 OT 11724.26 2464.91
YtVideo 59.69 151.24 1422.19 39035.14 766.77 OM 2091.84 182.19 OT OT 3383.65

posed LMTC method outperforms the completing ones and
achieves the best in almost all settings. Concretely, it im-
proves the accuracy respect to the second-best by 0.22%,
1.90%, 4.12%, 3.51%, 2.73% and 0.20% on the former six
datasets. Although 1.35% accuracy decrease is observed on
YtVideo, corresponding EOMSC method takes two hyper-
parameters and the associated NMI is completely infeasi-
ble. Also, OPMC outperforms the proposed LMTC method
by 2.53% NMI on BDGP, but it takes 95.27 seconds which
is nearly 24 times to LMTC. By comparing with the latter

four multi-view tensor clustering methods in depth, the pro-
posed LMTC outperforms them by large margins. To be
summarized, the proposed LMTC method achieves promis-
ing performances and validated to be effective empirically.

5.3. Time consumption

To validate the feasibility on large-scale data, we investigate
the time consumptions of the proposed LMTC and com-
pleting methods on chosen benchmark (ORL) in Table 3.
To ensure comparison fairness, each method is allocated to



Table 4. Validation (ACC) on inadvertent label use by applying the tensor rotation trick. Note that, the arrows ↓ and ↑ represent performance
decrease and increase, respectively. Moreover, only ACC results are provided, while NMI and Purity results in Appendix.

Dataset ASR-ETR S2MVTC TBGL Orth-NTF
Sort Shuffle Gap Sort Shuffle Gap Sort Shuffle Gap Sort Shuffle Gap

ORL 88.50 82.75 5.75 ↓ Error Error Error 70.75 57.05 13.70 ↓ 66.25 39.70 26.55 ↓
HW 99.85 87.15 12.70 ↓ 88.50 57.15 31.35 ↓ 74.55 75.64 1.09 ↑ 82.55 66.32 16.23 ↓
BDGP 99.04 50.08 48.96 ↓ 99.44 31.56 67.88 ↓ OT OT OT Error Error Error
ALOI 80.03 57.98 22.05 ↓ 55.16 55.84 0.69 ↑ OT OT OT 63.61 40.77 22.84 ↓
DryBean 91.17 72.07 19.10 ↓ 78.75 49.14 29.61 ↓ OT OT OT 69.41 28.52 40.89 ↓
AwA 67.70 9.41 58.30 ↓ 56.03 6.62 49.41 ↓ OT OT OT 64.63 4.45 60.18 ↓
YtVideo 71.35 17.05 54.30 ↓ 54.59 11.25 43.34 ↓ OT OT OT OT OT OT
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Figure 3. Performance variation respect to parameter λ.

a single CPU core of the same server and repeated multi-
ple times to obtain the averages. It can be observed that
LMTC is about the middle among all multi-view cluster-
ing methods. Due that the completing methods are of linear
complexity to the number of samples and proposed to solve
large-scale problem, the LMTC is also feasible to deal with
large-scale data. In the latter four multi-view tensor cluster-
ing methods, TBGL cannot compute the clustering results
on BDGP, ALOI, DryBean, AwA and YtVideo datasets be-
fore the maximal time limit. Nevertheless, Orth-NTF takes
much longer time than LMTC. As a comparison, these two
observations further indicate the efficiency of LMTC.

5.4. Study on the tensor rotation trick

As introduced in Section 4.1, the application of tensor rota-
tion trick along with t-SVD based constraints incorporates
the data sequential information and results in inadvertent
label use. In existing researches, most of multi-view tensor
clustering methods do so and the completing methods, i.e.
ASR-ETR, S2MVTC, TBGL and Orth-NTF, are the repre-
sentatives. To support this claim, we conduct an ablation
study by comparing them in two settings where the first is
shuffling data before clustering, while the other is sorting
data before clustering. Corresponding results are collected
in Table 4. It can obvious that performances of the four

methods drop to a large extent when shuffling data, well il-
lustrating the fact that data labels are inadvertently used in
existing multi-view tensor clustering approaches.

5.5. Parameter study

Since the proposed LMTC method consists of a trade-off
parameter λ, the parameter study is conducted on the cho-
sen benchmark datasets. Specifically, with grid-searching λ
in [10−10, 10−9, · · · 105], we record the performances and
present its variation in Fig. 3. It can be observed that the
performance first increases then reaches the top and finally
decrease when increasing parameter λ. Since parameter λ
can be considered as the weight of item ∥H∥⊛ in Eq. (13),
this well validates the effectiveness of the t-TNN constraint
to improve clustering performance. Nevertheless, this also
suggests us to set λ around 100 in practice.

6. Conclusion
Although existing multi-view clustering methods have
achieved remarkable performance improvements in recent
years, some of them inadvertently incorporate the data la-
bels by utilizing t-SVD technique with the tensor rotation
trick, violating the unsupervised learning setting. Mean-
while, existing large-scale approaches fail to consider the
similarities among all data samples. To address the two is-
sues, we propose to remove the tensor rotation trick and,
on this basis, develop a novel large-scale multi-view tensor
clustering method of linear complexity. Moreover, exten-
sive experiments are conducted and corresponding results
well validate its effectiveness and efficiency.
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