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Abstract— Taking the assumption that data samples are able
to be reconstructed with the dictionary formed by themselves,
recent multiview subspace clustering (MSC) algorithms aim to
find a consensus reconstruction matrix via exploring complemen-
tary information across multiple views. Most of them directly
operate on the original data observations without preprocessing,
while others operate on the corresponding kernel matrices.
However, they both ignore that the collected features may be
designed arbitrarily and hard guaranteed to be independent
and nonoverlapping. As a result, original data observations and
kernel matrices would contain a large number of redundant
details. To address this issue, we propose an MSC algorithm that
groups samples and removes data redundancy concurrently. In
specific, eigendecomposition is employed to obtain the robust data
representation of low redundancy for later clustering. By utilizing
the two processes into a unified model, clustering results will
guide eigendecomposition to generate more discriminative data
representation, which, as feedback, helps obtain better clustering
results. In addition, an alternate and convergent algorithm is
designed to solve the optimization problem. Extensive experi-
ments are conducted on eight benchmarks, and the proposed
algorithm outperforms comparative ones in recent literature by
a large margin, verifying its superiority. At the same time, its
effectiveness, computational efficiency, and robustness to noise
are validated experimentally.

Index Terms— Eigendecomposition, multiview clustering,
robust representation, subspace clustering.

I. INTRODUCTION

CLUSTERING is one of the most fundamental techniques
and widely applied in numerous machine learning tasks,
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such as computer vision and bioinformatics [1]–[4]. Given the
data drawn from a union of clusters, subspace clustering
aims to reveal its intrinsic subspace structure [5]–[8]. Recent
subspace clustering algorithms assume that each data sample
is able to be reconstructed by a linear or affine combina-
tion of themselves [9]–[13]. Along with the reconstruction
process, two critical components are produced, including the
reconstruction error and the reconstruction matrix which is
composed of the self-representation coefficients corresponding
to each sample. Specifically, the representative sparse subspace
clustering (SSC) [9], targeting at the high-dimensional data,
imposes the l1-norm on these two items so as to obtain
the sparse data self-representations. Then, spectral clustering
is applied on the learned self-representations to group the
samples into different clusters [14], [15]. Compared with SSC,
low-rank representation (LRR) [10], [16] holds that some
samples are away from the underlying subspaces and therefore
regularizes the columns of reconstruction error matrix to be
sparse with l2,1-norm. Other norms, such as Frobenius and
kernel norm, are also used in the literature [17]–[23]. We adopt
the Frobenius norm since it can group the highly correlated
samples [17] and is able to be efficiently optimized.

In real applications, there are a large amount of multiview
data and the aforementioned approaches are incapable of them.
For instance, multiple semantic independent features, such as
packet, TLS, and certificate features, are extracted in encrypted
malware traffic detection [24]. Directly concatenating them is
obviously the optimal way for further machine learning tasks.
Therefore, multiview subspace clustering (MSC) algorithms
are proposed to explore the complementary information among
different views and achieve promising performances. Some
methods produce the view-specific self-representations indi-
vidually and then aggregate them into a consensus one or the
final partition matrix [25]–[35]. For example, diversity-induced
MSC (DiMSC) [25] employs the Hilbert–Schmidt indepen-
dence criterion (HSIC) to measure the dependences between
self-representations and minimize them to increase the diver-
sity of underlying subspaces. Meanwhile, other approaches
[36]–[40] reconstruct the data with a shared self-representation
across all views. Wang et al. [36] notice that original data
observations can be discomposed into two parts, including
the shared latent representation which encodes the cluster-
ing details and view-specific deviations, such as noise. The
proposed method follows the second type of method for
its conciseness. The aforementioned approaches assume that
data live on linear subspaces and directly adopt original data
observations as input, while a few ones in literature adopt
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Fig. 1. Eigenvalue distribution of the inverse polynomial kernel matrix
corresponding to the first view of Dermatology data set. The eigenvalues are
sorted from large to small. The bar plot shows the times of each eigenvalue
to the first one. Meanwhile, the curve plot presents the calculative sum of the
sorted eigenvalues.

kernel trick to solve the nonlinear problem by producing
the corresponding kernel matrices [13], [32], [34], [40]–[43].
For example, Patel and Vidal [41] motivated by the success
of nonlinear representations in numerous machine learning
tasks, first extend the SSC algorithm with kernel trick. Brbic
and Kopriva [32] and Zhang et al. [34] kernelized their
MSC algorithms by implicitly mapping data observations to
reproducing kernel Hilbert spaces (RKHSs). Instead of directly
using the primary kernels in MSC, Zhou et al. [40] constructed
a neighbor kernel, which not only preserves the diagonal block
structure but also enhances the robustness to noise and outliers,
gaining a promising performance.

The two aforementioned types of inputs, including origi-
nal data and corresponding kernel matrices, always contain
redundant information, which is harmful to clustering perfor-
mance. For original data observations, the collected features
are designed arbitrarily in a large volume of applications
and hard guaranteed to be independent or nonoverlapping.
Sometimes, even the features designed by professionals do
so. Meanwhile, the redundancy in original observations cannot
be sufficiently removed by simply constructing correspond-
ing kernel matrices. We perform eigendecomposition on the
inverse polynomial kernel matrix generated from the first-
view data observation of Dermatology data set (Dermatology
is thoroughly described in Section IV). Resultant eigenvalues
are plotted in Fig. 1. It can be seen that only a small number
of eigenvalues are presented to be large and make the most
of the eigenvalue sum, while the others are relatively small to
zero, which indicates that kernel matrices consist of a large
number of fruitless information.

In order to address this issue, we propose an elegant
algorithm called MSC via co-training robust data representa-
tion (CoMSC). Its flowchart is presented in Fig. 2. Specif-
ically, the data are first mapped by five kernel functions,
including Gaussian, polynomial, linear, sigmoid, and inverse
polynomial, into corresponding RKHSs. With the obtained
kernel matrices, eigendecomposition technique is employed to
remove redundant information in kernels and obtain robust

data representations. Then, the MSC algorithm is adopted
to construct the consensus self-representation via exploring
complementary details in these learned representations. Nev-
ertheless, we utilize these two processes into a single objective,
where eigendecomposition provides MSC with robust repre-
sentations; at the same time, MSC guides eigendecomposition
to produce more suitable representations for clustering. With
the robust view-specific representations and ideal consensus
self-representation jointly optimized in this cyclic procedure,
a satisfying clustering performance can be achieved. In addi-
tion, we design an alternate strategy to solve the resultant
optimization problem efficiently. We also analyze its com-
plexity and prove the convergence. Extensive experiments are
conducted to evaluate its effectiveness, superiority, computa-
tional efficiency, and robustness to noise. The contributions
are summarized as follows.

1) We provide a brief insight that original data observations
contain a large number of redundant details, and simply
preprocessing them into kernel matrices cannot remove
the redundancy.

2) We propose an elegant MSC model by grouping data
samples along with removing redundant information in
inputs. Its effectiveness, superiority, and robustness to
noise are validated experimentally.

3) We design an alternate algorithm to optimize the pro-
posed model. This algorithm is validated to be efficient
compared with recent MSC ones in the literature.

To the best of our knowledge, there are a few MSC meth-
ods concerning about data redundancy. Therefore, this article
would encourage the community to consider the data quality
when designing new multiview clustering algorithms. In addi-
tion, we propose to perform clustering and data preprocessing
concurrently, which provides a new approach for researchers
to improve the performance of their own clustering methods.

II. RELATED WORK

A. Subspace Clustering

Given n data observations X ∈ R
d×n drawn from k clusters,

subspace clustering algorithms aim to find reconstruction
matrix Z, which encodes data samples with the dictionary
formed by themselves. Their general formulation can be
presented as

min
Z

L(X, XZ) + λ�(Z) s.t. Z ∈ R
n×n (1)

where L(·) and �(·) represent the regularization terms. Various
norms are adopted in the literature and the most widely used
ones are summarized in Table I. In real-world applications,
noises and errors are often collected due to sensor failure
or environment change. Therefore, an error matrix E is
employed to capture them and the objective of least squares
regression (LSR) presents

min
Z

�E�F + λ�Z�F

s.t. X = XZ + E, diag(Z) = 0, Z ∈ R
n×n. (2)

The proposed algorithm is designed based on (2), for it can
group the highly correlated samples and is able to be efficiently
solved.
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Fig. 2. Overview of the proposed method (taking the data of two views as an example). Two semantic parts are concerned, including the multiview
information preservation and subspace structure preservation. Following the solid arrows, it can be observed that kernel matrices are first generated from
the original data. Then, eigendecomposition is employed to obtain robust representations. Furthermore, the unified subspace representation is computed via
utilizing the complementary information of multiple views. Following the dash arrows, the clustering details are delivered from kernel matrices to the robust
representations and then to the consensus subspace structure. Next, the subspace structure guides the generation of purposive robust representations as feedback.
Better self-representations are obtained along with the loop.

TABLE I

COMMON REGULARIZATIONS IN SUBSPACE CLUSTERING

B. Multiview Subspace Clustering

Given data from V views {Xv}V
v=1, where Xv is drawn from

R
dv×n and dp is the feature dimension of pth view, MSC

algorithms aim to find consensus reconstruction matrix Z,
which can be presented as

min
{Zv }V

i=1 ,Z
L�{Xv , XvZv }V

v=1

� + λ�
�{Zv}V

v=1, Z
�

s.t. Zv ∈ R
n×n ∀v ∈ {1, 2, . . . , V }, Z ∈ R

n×n (3)

where Zv is the vth reconstruction matrix, also termed data
self-representation. Some MSC approaches assume that data
observations of each view lie on the same subspaces and
find Z via

min
Z

L�{Xv , XvZ}V
v=1

� + λ�(Z) s.t. Z ∈ R
n×n. (4)

It is obvious that the model inputs in (1)–(4) are the
original data observations, which are sometimes centered or
normalized [30]. However, the quality of these observations is
hard guaranteed in real-world data sets. For instance, the data
features are designed by nonprofessionals or even arbitrarily,
leading to information redundancy. These data of poor quality
severely affect the performances of MSC algorithms. Kernel
matrix is another natural form of data observation and can

be directly adopted as input by simply substituting X in the
aforementioned models. However, this does not remove the
information redundancy and improve data quality, as shown
in Fig. 1.

III. PROPOSED ALGORITHM

A. Objective

In order to remove the redundancy in the two types
of inputs, i.e., original data observations and correspond-
ing kernel matrices, we first define several kernel mappings
{φs(·)}S

s=1. For the vth view, the kernel matrices are com-
puted as

K(v)
s (i, j) = φs

�
x(v)

i

��
φs

�
x(v)

j

�
(5)

in which i, j ∈ {1, 2, . . . , n} represents the sample indexes.
In this way, m corresponding kernel matrices are obtained
as {Kp}m

p=1, s.t. m = S ∗ V . However, the generated kernel
matrices contain a large volume of redundant details. Fig. 1
shows the eigenvalue distribution of the inverse polynomial
kernel matrix corresponding to first view of Dermatology.
As claimed in [44, Sec. 4.2], the eigenvector corresponding to
a larger eigenvalue carries more discriminative information.
If taking the eigenvalue to roughly measure the volume of
discriminative information in a corresponding eigenvector,
we can see that top-50 eigenvectors keep more than 80%
kernel details. Nevertheless, there are six classes in Dermatol-
ogy. However, top-6 eigenvectors only contain 51.44% kernel
details. In sum, two observations can be concluded:

1) The relationships among data samples are only con-
tained in a small proportion of eigenvectors, while most
of eigenvectors are redundant and should be removed.
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2) It is not ideal to fix the size of the robust data represen-
tations as R

k×n . Instead, matrices of size R
c×n, where

c > k should be employed.
Therefore, we employ the eigenvectors corresponding to

c largest eigenvalues as the robust data representation,
contributing to

U∗ = arg max
U

Tr
�
UKU��

s.t. UU� = I, U ∈ R
c×n (6)

which exhibits two merits.
1) U∗ keeps the most profitable details in kernel matrix.
2) The orthogonal constraint on U∗ ensures the represen-

tations living in low-rank spaces, which benefits the
afterward subspace clustering process.

Then, we extend the LSR algorithm [17] in (2) into mul-
tiview setting following the framework in (4). The multiview
LSR objective is given as

min
Z, β

λ�Z�2
F +

m�
p=1

βp�Xp − XpZ�2
F

s.t. diag(Z) = 0, Z ∈ R
n×n, β

1
2 �1 = 1, β ∈ R

m
+. (7)

Nevertheless, (7) can be efficiently optimized and theoretically
guaranteed to be convergent since a closed-form solution with
respect to Z can be obtained. By substituting the input of (7),
i.e., {Xp}m

p=1, with the preprocessed robust data representations
in (6), i.e., {Up}m

p=1, and utilizing these two processes into
one framework, the proposed objective of CoMSC algorithm
is obtained as

min{Up}m
p=1, Z, β, γ

λ�Z�2
F +

m�
p=1

βp�Up − UpZ�2
F

−
m�

p=1

γpTr
�
UpKpU�

p

�
s.t. diag(Z) = 0, Z ∈ R

n×n, UpU�
p = I, Up ∈ R

c×n

β
1
2 �1 = 1, β ∈ R

m
+, γ �γ = 1, γ ∈ R

m
+ (8)

in which the tradeoff between data representation learning and
MSC is set to 1, for that they are considered to be equally
important. The coefficients β and γ indicate the importance
of each view and are imposed on different norms to ensure the
convexity [45]. In sum, once the robust data representations
{Up}m

p=1 are built from the corresponding kernel matrices
{Kp}m

p=1, they are adopted in clustering to build a consensus
reconstruction matrix Z. As feedback, the clustering process
guides the data representation learning to produce more purpo-
sive ones. With the close collaboration of these two processes,
a promising performance can be achieved.

B. Optimization

To solve the proposed objective in (8), we design an
alternate optimization strategy. In specific, each unknown
variable is solved while fixing the others fixed in each step.
By cyclically optimizing every variable, the procedure will
converge to a local minimum. We present the optimization
strategy in detail as follows.

1) Z-Subproblem: Fixing {Up}m
p=1, β, and γ , the optimal Z∗

can be solved via solving the following optimization problem:

min
Z

λ�Z�2
F +

m�
p=1

βp�Up − UpZ�2
F

s.t. diag(Z) = 0, Z ∈ R
n×n. (9)

Observing that the diagonal of Z is compulsively constrained
to zeros, we remove the i th column of Up = {u(i)

p }n
i=1 ∈ R

c×n

to obtain H(i)
p = {u(1)

p , . . . , u(i−1)
p , u(i+1)

p , . . . , u(n)
p } ∈ R

c×(n−1)

and optimize each column of Z separately as

min
zi

λ�zi �2
F +

m�
p=1

βp

��u(i)
p − H(i)

p zi

��2

F

s.t. zi ∈ R
n−1 (10)

which can be transformed to

min
zi

Tr
�
Ei zi z�

i

� − 2

⎛
⎝ m�

p=1

βpu(i)�
p H(i)

p

⎞
⎠zi

s.t. Ei = λI +
m�

p=1

βpH(i)�
p H(i)

p , zi ∈ R
n−1. (11)

It is easy to prove that Ei is positively defined, and thus, (11)
is convex and has a global minimum. By setting its deviation
to zero, the optimal z∗

i is obtained as

z∗
i = E−1

i

⎛
⎝ m�

p=1

βpH(i)�
p u(i)

p

⎞
⎠

s.t. Ei = λI +
m�

p=1

βpH(i)�
p H(i)

p . (12)

However, it is of high computation complexity to obtain the
optimal solution via (12) since an inverse matrix is required
to be computed for every column of Z. Defining D =
(λI + �m

p=1 βpU�
p Up)

−1 and UpP = [H(i)
p , u(i)

p ] where P is
a permutation matrix, P�P = PP� = I, we have

P�DP =
⎡
⎣P�

⎛
⎝λ1I +

m�
p=1

βpU�
p Up

⎞
⎠P

⎤
⎦

−1

=

⎡
⎢⎢⎢⎢⎣

λI +
m�

p=1

βpH(i)�
p H(i)

p

m�
p=1

βpH�
p u(i)

p

m�
p=1

βpu(i)�
p Hp λ +

m�
p=1

βpu(i)�
p u(i)

p

⎤
⎥⎥⎥⎥⎦

−1

=
�

E−1
i 0
0 0

�
+ σi

�
bi b�

i bi

b�
i 1

�
(13)

in which

bi = −z∗
i

σi = λ +
m�

p=1

βpu(i)�
p u(i)

p −
m�

p=1

βpu(i)�
p

�
H(i)

p E−1
i H(i)�

p

�
u(i)

p .

(14)
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The last step holds for Woodbury formula [46]. It can be seen
that z∗

i = −bi from (14). At the same time, we can obtain
from the definition of P that

Z∗( j, i) =
�

−D( j, i)/D(i, i), j �= i

0, j = i
(15)

which can be rewritten as

Z∗ = −D(diag(D))−1, diag
�
Z∗� = 0. (16)

2) U-Subproblem: It is obvious that the data representations
{Up}m

p=1 are independent of each other. Thus, they are able to
be optimized separately. With fixing {Uq}m

q=1,q �=p , Z, β, and
γ , the proposed objective can be reduced to

min
Up

βp�Up − UpZ�2
F − γpTr

�
UpKpU�

p

�
s.t. UpU�

p = I, Up ∈ R
c×n (17)

which can be further transformed into

max
Up

Tr
�
UpMpU�

p

�
s.t. Mp = 2βpZ� − βpZZ� + γpKp

UpU�
p = I, Up ∈ R

c×n . (18)

Equation (18) can be efficiently solved via eigendecomposition
where U∗

p is the matrix of eigenvectors corresponding to c
largest eigenvalues [37], [47], [48].

3) β-Subproblem: Fixing {Up}m
p=1, Z and γ , the objective

with respect to β can be reduced to

min
β

β�ν

s.t. νp = �Up − UpZ�2
F , β

1
2 �1 = 1, β ∈ R

m
+. (19)

According to the Cauchy–Schwarz inequality

�
β�ν

�⎛⎝ m�
p=1

1

νp

⎞
⎠ =

⎛
⎝ m�

p=1

��
βp

√
νp

�2

⎞
⎠

⎛
⎝ m�

p=1

�
1√
νp

�2
⎞
⎠

≥
⎛
⎝ m�

p=1

�
βp

⎞
⎠

2

= 1 (20)

in which the equality holds when

ν1

�
β1 = ν2

�
β2 = · · · = νm

�
βm . (21)

Considering the extra regularization on β, i.e., β(1/2)�1 = 1,
we solve the optimization problem as

β∗
p = 1

�⎛
⎝νp

m�
q=1

1

νq

⎞
⎠

2

. (22)

4) γ -Subproblem: Fixing {Up}m
p=1, Z and β, the objective

with respect to γ can be reduced to

max
γ

γ �ν

s.t. νp = Tr
�
UpKpU�

p

�
, γ �γ = 1, γ ∈ R

m
+. (23)

According to the Cauchy–Schwarz inequality

�
γ �ν

�2 =
⎛
⎝ m�

p=1

γpνp

⎞
⎠

2

≤
⎛
⎝ m�

p=1

γ 2
p

⎞
⎠

⎛
⎝ m�

p=1

ν2
p

⎞
⎠

= �
γ �γ

��
ν�ν

� = ν�ν (24)

in which the equality holds when

γ1/ν1 = γ2/ν2 = · · · = γm/νm . (25)

Considering the extra regularization on γ , i.e., γ �γ = 1,
we solve the optimization problem as

γ ∗
p = νp

�⎛
⎝ m�

q=1

ν2
q

⎞
⎠

1/2

. (26)

An overview of the alternate optimization strategy is outlined
in Algorithm 1.

Algorithm 1 MSC via CoMSC

Require: data {Xv}V
v=1, size of robust data representation c

and parameter λ.
Ensure: consensus reconstruction matrix Z.
1: Generate the kernel matrices {Kp}m

p=1 from {Xv}V
v=1.

2: Initialize {Up}m
p=1, β and γ .

3: while (obj t−1 − obj t)/obj t ≤ σ do
4: Update Z by solving Eq. (16).
5: Update {Up}m

p=1 with Eq. (18).
6: Update β with Eq. (22).
7: Update γ with Eq. (26).
8: t = t + 1.
9: Calculate objective value obj t with Eq. (8).

10: end while

C. Convergence and Complexity

Most subspace clustering methods, such as [49], cannot be
proved to converge, while the convergence of our proposed
algorithm is able to be theoretically guaranteed. For the ease
of expression, we reformulate the objective into

min
Z, {Up}m

p=1
, β, γ

J
�

Z,
�
Up

�m

p=1, β, γ
�
. (27)

As shown in Algorithm 1, the optimization strategy consists
of four iterative parts, i.e., U, Z, β, and γ subproblems.
Correspondingly, the analysis of each subproblem on conver-
gence is listed as follows. Note that superscript t represents
the optimization at round t .
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1) Z-Subproblem: Given {Up}m (t)
p=1 , β(t), and γ (t), we can

obtain Z(t+1) via optimizing (16), resulting in

J
�

Z(t),
�
Up

�m(t)

p=1, β (t), γ (t)
�

≥ J
�

Z(t+1),
�
Up

�m (t)

p=1 , β(t), γ (t)
�
. (28)

2) U-Subproblem: Given Z(t+1), β(t), and γ (t), we can
obtain {Up}m (t+1)

p=1 via optimizing (18), resulting in

J
�

Z(t+1),
�
Up

�m (t)

p=1 , β(t), γ (t)
�

≥ J
�

Z(t+1),
�
Up

�m(t+1)

p=1 , β(t), γ (t)
�
. (29)

3) β-Subproblem: Given Z(t+1), {Up}m (t+1)
p=1 , and γ (t),

we can obtain β(t+1) via optimizing (22), resulting in

J
�

Z(t+1),
�
Up

�m(t+1)

p=1 , β(t), γ (t)
�

≥ J
�

Z(t+1),
�
Up

�m (t+1)

p=1 , β(t+1), γ (t)
�
. (30)

4) γ -Subproblem: Given Z(t+1), {Up}m (t+1)
p=1 , and β(t+1),

we can obtain γ (t+1) via optimizing (26), resulting in

J
�

Z(t+1),
�
Up

�m (t+1)

p=1 , β(t+1), γ (t)
�

≥ J
�

Z(t+1),
�
Up

�m (t+1)

p=1 , β(t+1), γ (t+1)
�
. (31)

To sum up (28)–(31), the following inequality holds that:
J

�
Z(t),

�
Up

�m (t)

p=1 , β(t), γ (t)
�

≥ J
�

Z(t+1),
�
Up

�m (t+1)

p=1 , β (t+1), γ (t+1)
�

(32)

which indicates that the objective value monotonically
decreases along with iterations. Meanwhile,

J ≥ 0 + 0 −
m�

p=1

γp

n�
i=1

σpi ≥ −
m,n�

p,i=1

σpi (33)

in which {σpi}m,n
p,i=1 are the eigenvalues of the kernel matrices

{Kp}m
p=1. Equation (33) illustrates that the objective is lower

bounded. Therefore, the proposed algorithm is theoretically
convergent.

Complexity analysis is conducted corresponding to the
four subproblems. In U-subproblem, an eigendecomposition is
performed on each view, and thus, the complexity is O(mn3).
For updating Z, the LU decomposition is employed to compute
the inverse of λI+�m

p=1 βpU�
p Up, which has a complexity of

O(n3). While solving β and γ , their complexities are O(cn2).
Assuming that t iterations are needed to converge, the overall
complexity is O(tmn3).

IV. EXPERIMENT

A. Experiment Setting

We employ eight data sets to evaluate the effectiveness,
superiority, and efficiency of the proposed algorithm, including
the following.

TABLE II

SPECIFICATIONS OF THE USED DATA SETS

1) Dermatology1 is used for the diagnosis of erythemato-
squamous diseases, including psoriasis, seborrheic der-
matitis, lichen planus, pityriasis rosea, chronic dermati-
tis, and pityriasis rubra pilaris.

2) WebKB2 consists of webpages that are described from
two aspects, i.e., contents and links. They are collected
from four universities and Wisconsin is selected.

3) BBCSport3 is constructed from single-view sport cor-
pora by splitting news articles into segments.

4) Prokaryotic4 contains multiple prokaryotic species
described with heterogeneous multiview data, including
textual data and different genomic representations.

5) Reuters5 contains 2000 documents each described with
five languages, including English, French, German,
Italian, and Spanish.

6) Wiki6 contains 2866 selected sections from the
Wikipedia’s featured article collection where word and
SIFT histogram are used for text and image, respectively.

7) Caltech7 is a subset of Caltech101,7 which collects a
large number of object pictures belonging to 101 cat-
egories. Insides, seven popular classes, including face,
motorbike, dollar bill, garfield, snoopy, stop sign and
windsor chair, are selected.

8) HandWritten8 consists of features of handwritten numer-
als (0–9) extracted from a collection of Dutch utility
maps.

Their specifications are summarized in Table II.
Meanwhile, the proposed algorithm is compared with MSC

algorithms in recent literature. In specific, two baselines and
another ten algorithms are given in the following.

1) LSRb [17] (baseline) performs subspace clustering for
each view and the best result is reported.

2) LSRc [17] (baseline) performs subspace clustering by
simply contacting all views into a single one.

1https://archive.ics.uci.edu/ml/datasets/dermatology
2http://lig-membres.imag.fr/grimal/data.html
3http://mlg.ucd.ie/datasets/segment.html
4https://github.com/mbrbic/MultiViewLRSSC/tree/master/datasets
5http://lig-membres.imag.fr/grimal/data.html
6http://www.svcl.ucsd.edu/projects/crossmodal/
7http://www.vision.caltech.edu/Image_Datasets/Caltech101/
8https://archive.ics.uci.edu/ml/datasets/Multiple+Features
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TABLE III

PERFORMANCE COMPARISON OF XLRS, KLRS, RLRS, AND COMSC

3) RMSC [50] first builds a transition probability matrix
corresponding to each view and adopts them to recover
a shared low-rank transition probability matrix that is
used as an input to the standard Markov chain method
for clustering.

4) DiMSC [25] employs HSIC to measure the depen-
dences between self-representations and minimize them
to increase the diversity of underlying subspaces.

5) LT-MSC [26] regards the subspace representation matri-
ces of multiple views as a tensor and regularizes it with
low-rank regularization for the affinity matrix.

6) MSSC [38] first exploits the self-expressiveness in each
data view and then enforces the common representation
across all views.

7) ECMSC [30] harnesses the complementary information
between different representations by introducing a novel
position-aware exclusivity term and a consistency term.

8) LMSC [49] assumes that all data views can be recon-
structed by the affine transformations of one latent
representation and co-train these parameterized transfor-
mations with the afterward subspace clustering.

9) LRSSC [32] balances the agreement across different
views while encouraging sparsity and low rankness of
the solution.

10) CSMSC [51] assumes that the self-representations con-
sist of view-consistent part and view-specific parts
concurrently. By separately regularizing the two parts,
the algorithm obtains a satisfying performance.

11) FMR [52] utilizes complementary information by
exploring nonlinear and high-order correlations among
different views with HSIC.

12) PMSC [53] fuses multiview information in partition
level and assigns larger weights to the partitions close
to the consensus one.

We directly adopt the codes of comparative methods from
authors’ websites, perform grid search in the parameter sets
recommended in their papers, and report the best results.
For the proposed algorithm, we apply five kernel mappings,

including Gaussian, polynomial, linear, sigmoid, and inverse
polynomial, on the original data observations to obtain the
corresponding kernel matrices. In addition, the tradeoff λ and
the size of robust data representations, c, are, respectively,
searched from 2.∧{−10,−8, . . . , 10} and {k, 2k, . . . , 20k},
where k is the number of clusters. In the same way, the best
results are reported. Furthermore, we open the code on
Github.9

B. Experiment Results

In the following experiments, three evaluation metrics,
including accuracy (ACC), normalized mutual information
(NMI), and purity, are adopted to measure the performances
of the proposed algorithm.

1) Effectiveness: In order to show the effectiveness of the
proposed robust representation, we first conduct experiments
on four objectives. They are given in the following.

1) Multiview Subspace Clustering via Least Squares
Regression (XLSR): Its objective is presented in (7) and
the original data observations are adopted as input.

2) Multiview Subspace Clustering via Least Squares
Regression With Kernel Matrices (KLSR): It has the
same objective as XLSR in (7), but the kernel matrices
of five types are adopted as input.

3) Multiview Subspace Clustering via Least Squares
Regression With Robust Data Representations (RLSR):
The objective is the same as XLSR in (7), but the robust
data representations generated from the eigendecompo-
sition of corresponding kernel matrices are adopted as
input.

4) MSC via CoMSC: It is the proposed algorithm in this
article and the objective is shown in (8).

The results are presented in Table III where the best results
are marked in bold. We have the following observations.

1) KLRS outperforms XLRS on seven data sets except
Handwritten by 12.29%, 2.13%, 3.02%, 16.33%, 7.25%,

9https://github.com/liujiyuan13/CoMSC-code_release
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1.47%, and 10.04% in ACC. In NMI, 20.22% on Der-
matology, 21.86% on WebKB, 10.73% on Prokaryotic,
9.25% on Reuters, and 8.53% on Caltech7 are observed,
with the others similar or slightly worse than XLRS
by less than 1.00%. In purity, 12.29% on dermatology,
15.47% on WebKB, 12.71% on Prokaryotic, and 5.76%
on Reuters are presented. These observations illustrate
that most of the chosen data sets live on the nonlinear
subspaces and better performances can be obtained by
simply adopting the kernel matrices as input. At the
same time, XLRS exceeds KLRS on HandWritten by
8.20% in ACC and 5.80% in purity, which indicates that
the data set is of linear subspace structure. Therefore,
it is not always the optimal choice to adopt kernel
trick on original data arbitrarily without sufficiently
preinvestigation.

2) RLRS outperforms KLRS on seven data sets, including
Dermatology, WebKB, BBCSport, Prokaryotic, Wiki,
Caltech7, and Handwritten, by 10.06%, 2.26%, 6.38%,
10.89%, 0.03%, 15.06%, and 28.75% in ACC, respec-
tively. Although the performances of RLRS are lower
than those of KLRS for Reuters, the gaps are relatively
small, i.e., 1.41% in ACC. We can conclude that the
eigenvectors corresponding to larger eigenvalues are bet-
ter representations for subspace clustering, which proves
our claim that eigendecomposition is able to remove the
redundancy in the original data observations and kernel
matrices.

3) Meanwhile, it can be observed that CoMSC outperforms
RLSR by 0.56%, 1.51%, 0.00%, 2.72%, 3.00%, 3.77%,
5.16%, and 1.25% in ACC. The results of Dermatology
and BBCSport are not so significant. This would be
caused by the simplicity of the two small data sets on
which high clustering accuracies have been obtained and
less room is left for further improvement. Nevertheless,
CoMSC shows satisfying improvements on big data
sets, such as Rueters, Wiki, and so on. This indicates
that the subspace clustering can guide the proposed
model to obtain more purposive and profitable data
representations, leading to a better performance at last.

4) Comparing CoMSC, XLRS, and KLRS together, it can
be seen that CoMSC outperforms the other two by
large margins. In specific, it exceeds the second best by
10.62%, 6.38%, 3.77%, 13.62%, 1.59%, 3.80%, 20.22%,
and 21.80% in ACC. Consistent improvements are also
shown in purity, i.e., 10.62%, 2.12%, 1.89%, 7.98%,
1.50%, 1.19%, 3.93%, and 31.80%. In NMI, 12.21% on
Dermatology, 9.44% on BBCSport, 3.00% on WebKB,
15.33% on Prokaryotic, 1.39% on Wiki, 11.68% on
Caltech7, and 22.57% on HandWritten are observed,
with only 0.40% decrease on Reuters. The observations
illustrate that the proposed robust and purposive rep-
resentations can boost the clustering performance to a
large extent.

Overall, we can conclude that adopting kernel matrices on
original data observations is helpful to the clustering task on
most data sets, but the proposed robust and purposive repre-
sentations, generated by co-training eigendecomposition and

subspace clustering, can consistently improve the clustering
performance by a large margin.

2) Superiority Over Recent MSC Algorithms: By jointly
optimizing data representation and performing subspace
clustering, the proposed algorithm outperforms MSC algo-
rithms in recent literature. In order to validate this point, we
conduct extensive experiments on 12 MSC algorithms and
compare their performances in Table IV. We mark the best in
bold and the second best with underline. Note that “–” indi-
cates the corresponding values unavailable for long execution
time. It can be seen that the proposed algorithm consistently
and significantly outperforms the comparative ones.

1) It exceeds the baselines to a large extent over all
metrics on seven data sets except Caltech7, i.e., 24.48%,
12.41%, 6.42%, 31.32%, 23.34%, 5.00%, and 14.00%
in ACC; 43.28%, 22.93%, 31.57%, 41.42%, 21.78%,
2.06%, and 15.87% in NMI; and 11.39%, 12.05%,
22.26%, 27.76%, 23.16%, 1.85%, and 14.00% in purity.
Meanwhile, some algorithms achieve worse perfor-
mances than the two baselines, such as RMSC, DiMSC,
and PMSC on Dermatology in ACC, which conversely
supports the superiority of the proposed method.

2) Compared with the other MSC algorithms in recent
literature, the proposed method outperforms them con-
sistently and significantly. Except Caltech7, it exceeds
the second best by 3.08%, 6.74%, 1.89%, 19.42%,
0.84%, 1.48%, and 2.00% in ACC; 7.12%, 10.95%,
3.60%, 20.12%, 0.43%, 3.76%, and 4.38% in NMI;
and 3.08%, 2.83%, 2.64%, 13.43%, 0.41%, 1.64%,
and 2.00% in purity. At the same time, the proposed
algorithm improves the clustering performance by 4.41%
in ACC and 1.53% in NMI with only 0.21% decrease
in purity. Although relatively small improvements are
observed on some data sets in one or more metrics over
the second best results, it obviously achieves much better
results than any one of the comparative methods alone.

3) We can observe that some algorithms fail on spe-
cific data sets. For example, LRSSC only achieves
3.25%, 6.92%, 7.61%, and 2.73% in NMI on BBCSport,
WebKB, Prokaryotic, and Reuters, respectively. Poor
performances deviated from averages largely can also
be observed on PMSC, LT-MSC, LLRb, LLRc, and so
on. However, the proposed method obtains promising
results over eight data sets in all metrics, verifying its
superiority.

Overall, the proposed CoMSC establishes its superiority over
the recent MSC algorithms, as reported in Table IV.

3) Computational Efficiency: In most cases, MSC algo-
rithms are of high computation load for the ADMM or ALM
optimization strategy is adopted, while the proposed algorithm
employs a simple alternate strategy that has a closed-form
solution in each step, making it more efficient compared with
most MSC algorithms in recent literature. The theoretical
analysis of computation complexity is thoroughly analyzed in
Section III-C. In addition, we validate its efficiency experimen-
tally by comparing it with the others respect to the execution
times on eight chosen data sets. The experiments are conducted
on an Ubuntu 18.04 server with 4 Intel Xeon (Cascade Lake)
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TABLE IV

PERFORMANCE COMPARISON OF MSC ALGORITHMS IN RECENT LITERATURE

Platinum 8269CY. Table V reports the results and we mark
the best in bold and the second-best with underline. It can
be seen that RMSC is the most efficient, for it requires the
shortest times on BBCSport, WebKB, Prokaryotic, Caltech7,
and HandWritten and the second shortest times on Reuters
and Wiki. Meanwhile, the second most efficient algorithm is
the proposed CoMSC, with the shortest times on Reuters and
Wiki and the second shorted times on BBCSport, WebKB and
Prokaryotic. By the way, MSSC shows comparable results with
CoMSC. The other algorithms are less efficient, for which
they require more than 1000 s on one or more data sets.

Therefore, we can conclude that CoMSC is more efficient than
most MSC algorithms in recent literature, making it feasible
in practical applications.

4) Robustness to Noise: Another merit of the proposed
algorithm is its robustness to noise. We validate this by
conducting experiments on Dermatology and BBCSport with
noises that are generated by following the method in [49].
In specific, two types of noise are considered, including
sample-specific N(v)

s and global N(v)
g , where v refers to the

vth view. For N(v)
s , we generate a random matrix with the

same size of the vth data observation and keep some columns
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TABLE V

EXECUTION TIME COMPARISON (IN SECONDS) OF MSC ALGORITHMS IN RECENT LITERATURE

Fig. 3. Performance comparison on dermatology with different magnitudes of noise. Twelve recent MSC methods, including two baselines, i.e., LSRb and
LSRc, are concerned.

Fig. 4. Performance comparison on BBCSport with different magnitudes of noise. Twelve recent MSC methods, including two baselines, i.e., LSRb and
LSRc, are concerned.

(20 columns in our experiments) while setting the others to
zero. For N(v)

g , a coefficient α is multiplied on a randomly
generated matrix to control noise magnitude. The overall noise
can be obtained as N(v) = N(v)

s + αN(v)
g . We compare CoMSC

and recent MSC algorithms under different magnitudes of
noise, and the results are reported in Figs. 3 and 4. It can
be observed that all algorithms have different degrees of
performance decrease when increasing noise, but CoMSC
keeps the top-1 performances over all noise volumes on the
two data sets. On BBCSport, CoMSC shows the smallest

decrease and even keeps stable in ACC and purity when
α ∈ [0.4, 0.8], while some algorithms, such as LT-MSC and
FMR, drop quickly in this range. At the same time, DiMSC,
ECMSC, and PMSC fail in this noise setting, presenting
poor performances far away from average. We can see from
Fig. 4 that BBCSport is more delicate to noise. All algorithms
decrease to random guess at last. In ACC, LLRb and LLRc
first drop to the bottom and is followed by RMSC, PMSC,
FMR, DiMSC, LRSSC, LMSC, MSSC, LT-MSC, and CSMSC
in order before α = 0.6. On the contrary, CoMSC reaches
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Fig. 5. Parameter sensitivity study. The left two plots show the results on dermatology, while the right two are tested on BBCSport. Best of the second best
refers to the best result of the second best comparative methods when performing grid search. The other metrics, including NMI and purity, share the similar
trend with ACC and are shown in the Appendix.

Fig. 6. Convergence validation on dermatology and BBCSport. The left two plots show the objective values along with iterations, whereas the right two
present the iteration numbers required to stop.

the bottom at α = 0.8. Similar observations can be obtained
in NMI and purity, showing the robustness of the proposed
method.

C. Parameter Study and Convergence

In order to investigate parameter stability of the proposed
algorithm, we perform grid search on the size of robust data
representation c when fixing λ to 210. Then, λ is tested with
c = 10k. The results on dermatology and BBCSport are
presented in Fig. 5. It can be observed that CoMSC largely
exceeds the baselines, i.e., LLRb and LLRc. Meanwhile,
we choose the best results of the other 12 algorithms over
their own parameter ranges as best of the second best. The
plots show that CoMSC stably outperforms them across a
large range of both parameters, making it practical in real-
world applications. We recommend to select c from 5k to 10k
and λ from 20 to 210.

Furthermore, the left two plots in Fig. 6 show that the
objective value monotonically decreases along with iterations
and reaches the bottom on both dermatology and BBCSport,
which proves the convergence of CoMSC experimentally. The
right two plots in Fig. 6 present the number of iterations,
which CoMSC requires to meet the stop criteria on Derma-
tology and BBCSport. The proposed algorithm quickly stops
within 15 iterations.

V. CONCLUSION

Most MSC algorithms adopt the primary data observa-
tions or corresponding kernel matrices as input, but ignore

their redundancies, leading to unsatisfactory performances.
To address this issue, we propose an elegant method named
MSC via CoMSC. It employs eigendecomposition technique
to obtain robust data representations for the afterward sub-
space clustering. Meanwhile, the clustering result guides to
generate more purposive data representations conversely. The
proposed algorithm achieves state-of-the-art performance and
is validated to be convergent, effective, efficient, and robust
to noise. We will explore the relationship between eigenvalue
distribution of kernel matrix and size of robust representations
in the future work.
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