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I. CLASSIC AD METHODS

As a classic problem, AD has constantly received attention
from the machine learning community. Classic solutions to AD
usually fall into the following categories: 1) Boundary based
methods. Such methods learn to establish a compact decision
boundary to enclose training data from the given normal class,
while this boundary is then used to separate the normal and
abnormal class. Two most representative methods are one-class
support vector machine (OCSVM) [1] and support vector data
description (SVDD) [2]. 2) Density based methods. Methods
like one-class Gaussian Mixture Model (OCGMM) [3] and
one-class Parzen density estimation [4] usually estimate the
data density distribution by given training data of the normal
class, and detect data at the sparse region as anomalies. 3)
Reconstruction based methods. Such methods assume that data
from normal class can be well reconstructed from its low-
dimensional embedding, while poor reconstruction would be
observed on the untrained abnormal class. The reconstruction
can be performed by methods like principal component anal-
ysis (PCA) [5] or shallow auto-encoder network (AE) [6]. In
addition to the above three categories, some creative solutions
are also proposed to solve AD problem. To name a few,
Juszczak et al. [7] propose to build minimal spanning tree
(MST) to model the normal class. Angiulli [8] introduces a
series of prototypes to describe the domain of normal class.
Désir et al. [9] customize the random forest model to AD
and propose one-class random forest. Classic AD methods are
often intuitive, yet they typically handle with relatively simple
tabular data from a single view.

II. CLASSIC MULTI-VIEW LEARNING METHODS

Multi-view learning has been recognized as a vital realm for
a long period. It explores complementary clues of multiple data
views, so as to boost the performance of a certain task. Many
regular tasks have already been discussed in the context of
the multi-view case, e.g. multi-view classification [10], multi-
view clustering [11]) and multi-view feature selection [12].
Those tasks then give rise to many multi-view learning models,
such as multi-view support vector machine [13], multi-view
subspace clustering [14], multiple kernel k-means [15], etc.
A comprehensive review of classic multi-view learning can
be found in [16]. In many works, multi-view learning tasks
are often formulated as a convex or non-convex optimization
problem that can be solved by certain classic optimization
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strategies. However, many of such solutions are of high com-
putational complexity, making it hard to scale them to those
large-scale tasks. Besides, compared with deep learning based
methods, they also require high-quality features extraction in
advance, which is the foundation of their effectiveness and
efficiency.

III. OTHER MULTI-VIEW DEEP AD BASELINES

In addition to 11 baseline solutions that have been presented
in the manuscript, we also design 4 additional baseline solu-
tions, as introduced below. The evaluation results of them are
reported in Table III.

A. Deep Belief Networks based Solution

Apart from those fusion functions given in the manuscript,
multi-view fusion can also be implemented by the classic
restricted boltzmann machines (RBM) from the energy view
[17]. To be more specific, a RBM is added to the top of all
encoders to perform fusion [18]. With the concatenation of
embeddings of all views v = Cat({h(v)}Vv=1), it serves as
the input to the visible layer of the RBM. To learn the joint
embedding h given by RBM’s hidden layer, it is required to
minimize the following energy function:

E(v,h) = −v> ·W · h− b> · v − a> · h (1)

where W,a,b are learnable parameters of the RBM. A joint
probability of v and h can be calculated by:

P (v,h) =
1

C
exp(−E(v,h)) (2)

where C is the partition function for normalization. The
maximization of joint probability (the minimization of energy)
can be realized by gradient descent and contrastive divergence.
After the minimization, the joint embedding h and the recon-
struction of v can both be obtained by sampling. In addition
to the fusion function, the encoders and decoders of the model
can also be implemented by RBMs. In this way, we can stack
the RBMs into a deep belief network (DBN). However, DBN
is not specifically designed for more complex data with certain
structures (e.g. 2D images), which restricts its application to
many practical scenarios.

B. Generalized DCCA based Solution

It is easy to discover that alignment functions given in the
manuscript require to compute the alignment for each view
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pair, and then add their results up to obtain the final alignment
measurement. By contrast, a deep generalized canonical corre-
lation analysis (DGCCA) [19] is proposed to naturally adapt to
the alignment of any number of views. The key to generalized
correlation based alignment is to encourage embeddings from
all views to be closed to a common representation G. Given
the linear mapping parameterized by U(v) and the embedding
matrix H(v) for the vth view, it aims to sovle the following
optimization problem:

min
G,U(v)

1

V

V∑
v=1

‖G−U(v) ·H(v)‖2F , s.t. G>G = Ir, (3)

in which Ir is the identity matrix with size r. The details to
solve the goal in Eq. 3 is shown in [19]. In our experiments,
the performance of DGCCA is shown to be similar to DCCA,
so we leave it to supplementary material.

C. Soft-boundary DSVDD based Solution

By contrast, soft-boundary DSVDD takes the noises in
training data into account, and introduces a soft boundary to
allow noisy data not to be mapped into the hyper-sphere. It
solves the optimization problem below:

min
R,θ(v)

R2 +
1

νN

N∑
n=1

max{0, ||Enc(v)(x(v)
n ))− c(v)||22 −R2}

+
λ

2
||θ(v)

E ||
2
F ,

(4)

where R represents the radius of hyper-sphere, and ν > 0
controls the softness of the boundary. Likewise, the above
optimization problem can also be solved by gradient descent.
Soft-boundary DSVDD can be tailored for multi-view deep
AD by the same way of simplified DSVDD, but it typically
performs worse than the simplified version.

D. Discriminative Self-supervision based Solution

Discriminative pretext task based self-supervised learning
is an newly-emerging technique [20]. Instead of conducting
generation, discriminative pretext tasks require to perform
representation learning by classification, because discrimina-
tive DNNs are usually considered to be more powerful than
generative DNNs in representation learning. As AD only has
training data from a single class, multiple pseudo classes need
to be created first to enable classification, which is the key to
discriminative pretext tasks. Specifically, we define a transfor-
mation set T = {T1, T2, · · · , Tm}. For each transformation
Ti ∈ T , it can transform a multi-view datum {x(v)

n }Vv=1 into
a new single-view datum x̃i,n = Ti({x(v)

n }Vv=1). After the
transformation, all data yielded by the transformation Ti are
collected as the ith pseudo class C′i = {x̃i,n}Nn=1. In this
way, a set of m pseudo classes can be collected as {C′i}mi=1.
Subsequently, those pseudo classes can be used to train a
discriminative DNNs by standard cross-entropy loss. As to
inference, a multi-view datum {x(v)

test}Vv=1 is first transformed

into m new single-view datum {x̃i,test}mi=1, Golan et al. [20]
show that a simple way to obtain the score of x(v)

test can be:

S({x(v)
test}

V
v=1) =

1

m

m∑
i=1

p(i|x̃i,test) (5)

where p(i|x̃i,test) refers to the confidence that x̃i,test belongs
to the ith pseudo class. When it comes to the design of
Ti, we are inspired by [21] and adopt a simple but generic
method: we first map the input data of each view to D-
dimensional embeddings by random projection, then embed-
dings of different views are permuted by a certain order
and concatenated into a joint embedding. By varying the
parameters of random projection or the permutation order,
we can obtain multiple transformations in T . In this way, we
can not only create sufficient transformations to create pseudo
classes, but also exploit the unique feature of multi-view data.
However, although discriminative self-supervised learning has
achieved remarkable success in other realms, our empirical
evaluations show that it is usually inferior to generative self-
supervised learning in multi-view deep AD.

IV. DETAILS OF MULTI-VIEW DATASETS

In Table I and II, we showcase the detailed information of
all multi-view benchmark datasets used in this paper, including
the total number of samples, number of views and the total
number of classes.

TABLE I: Details of multi-view deep one-class classification
datasets. MedMNIST and MvTecAD are introduced in Table II,
since they are composed of multiple subsets.

Dataset Number of
Samples Views Classes

Classic

BBC 2012 2 5
BDGP 2500 3 5
Caltech20 2386 6 20
Citeseer 3312 4 6
Cora 2708 4 7
Reuters 7200 5 6
Wiki 2866 2 10
AwA 30475 6 50
NUS-Wide 23953 5 31
SunRGBD 10335 2 45
YtFace 101499 11 31

Image

MNIST 70000 6 10
FashionMNIST 70000 6 10
Cifar10 60000 6 10
Cifar100 60000 6 10
SVHN 99289 6 10
Cat vs Dog 24931 4 2
CMU-MOSE 23500 3 7
DriverAD 453750 4 2
MedMNIST - - -
MvTecAD - - -

Video

UCSDped1 143259 2 2
UCSDped2 64061 2 2
UMN scene1 19648 2 2
UMN scene2 53561 2 2
UMN scene3 34294 2 2
Avenue 219026 2 2
ShanghaiTech 1419412 2 2

V. IMPLEMENTATION DETAILS

For tabular input data, we leverage a fully-connected DNN
to encode them into latent embeddings. The fully-connected
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TABLE II: Details of MedMNIST and MvTecAD datasets.

Dataset Number of
Samples Views Classes

MedMNIST

Path 107180 6 9
Derma 10015 6 7
OCT 109309 6 4
Pneumonia 5856 6 2
Retina 1600 6 5
Breast 780 6 2
Axial 58850 6 11
Coronal 25221 6 11
Sagittal 25221 6 11

MvTecAD

Bottle 292 4 2
Cable 374 4 2
Capsule 351 4 2
Carpet 397 4 2
Grid 342 4 2
Hazelnut 501 4 2
Leather 369 4 2
Metal Nut 335 4 2
Pill 434 4 2
Screw 480 4 2
Tile 347 4 2
Toothbrush 102 4 2
Transistor 313 4 2
Wood 326 4 2
Zipper 391 4 2

DNN has 512− 128− 32 hidden layers, which are equipped
with batch-normalization (bn) and ReLu activation function
(relu). For 2-D input data on video based multi-view datasets,
we implement the encoders by a convolutional neural networks
with the following architecture: conv(3, 2) − bn − relu −
conv(3, 2)− bn− relu− conv(3, 2)− bn− relu− reshape−
fc(2048, 32), where conv(3, 2) denotes the 2-D convolution
operation with kernel size 3 and stride 2 and fc denotes
a fully-connected layer. As to decoders, we simply adopt a
symmetric DNN architecture to realize decoding, while the
decoders for 2-D input data are implemented by deconvolution
operation. As to training, since the fine-tuning of hyperparam-
eters for AD is difficult, we empirically set the training epochs
of video based multi-view datasets to be 5 or 10, while the
rest of datasets are set to be 20. The batch size is typically
selected from 16, 32, 64 and 128, according to the size of
training set. For each dataset, the batch size is fixed for all
baseline solutions. Meanwhile, the default Adam optimizer in
PyTorch toolbox1 is used. The weight of alignment loss is
set to α = 0.1. The weight of L2-norm regularization is set
to 0. For tensor fusion, the rank R is set to 8. For energy
based fusion, we leverage a deep belief network that share the
same hidden layers with the aforementioned fully-connected
encoder. For similarity based alignment, we simply set the
margin to be 0. For generative self-supervision based methods,
we adopt a fully-connected neural network to perform fusion.
For the discriminative self-supervised method, we use 16,
3, 4, 1 random projections for data with 2-view, 3-view, 4-
view and more than 4 views respectively, which result in
16×2! = 32, 6×3! = 36, 2×4! = 48 and 1×V ! = V ! pseudo
classes for four cases. The classifier shares the same hidden
layer architecture with the previous fully-connected encoder
network, and a fully-connected layer and a softmax layer are
added to its top for classification.

1https://pytorch.org/

VI. ADDITIONAL EXPERIMENTAL RESULTS

Table III reports the performance comparison on selected
existing multi-view datasets between four miscellaneous base-
lines in this supplementary material and eleven ones in the
manuscript (DBN, DGCCA, DSV-B, CLAS denote the base-
lines introduced in Sec. III-A-III-D respectively). Meanwhile,
Table IV, V and VI present the AUROC results on the subsets
of MedMNIST and MvTecAD. Additionally, we show the
performance of different baselines and late fusion strategies
under AUPR and TNR@95%TPR metrics over all datasets in
Table VII - XVIII.
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TABLE III: AUROC (%) comparison on selected existing multi-view datasets between thirteen baselines in the manuscript and
four miscellaneous ones, including deep belief networks based solution (DBN), generalized DCCA based solution (DGCCA),
Soft-boundary DSVDD based solution (DSV-B) and discriminative self-supervision based solution (CLAS).

BBC BDGP Caltech20 Citeseer Cora Reuters Wiki AwA NUS-Wide SunRGBD

SUM 94.35±0.54 81.27±0.77 99.76±0.11 83.85±0.33 87.79±0.53 65.05±0.43 88.84±0.80 63.15±0.72 67.94±0.54 84.81±0.45
MAX 94.35±0.54 81.36±0.84 99.69±0.17 83.86±0.33 87.79±0.51 65.04±0.42 88.93±0.64 63.34±0.77 68.25±0.49 84.63±0.51
NN 94.35±0.54 80.98±0.84 99.77±0.11 83.87±0.34 87.78±0.52 65.03±0.42 88.85±0.51 63.27±0.71 68.56±0.47 84.55±0.42
TF 94.35±0.54 81.03±0.86 97.79±1.30 83.87±0.32 87.78±0.52 65.05±0.42 89.24±1.03 62.76±0.72 67.24±0.56 84.37±0.56
DIS 94.35±0.54 82.03±0.80 99.82±0.08 83.86±0.34 87.79±0.53 65.05±0.42 86.58±0.77 62.96±0.67 66.91±0.64 84.16±0.43
SIM 94.35±0.54 81.85±0.80 99.77±0.12 83.87±0.32 87.78±0.53 65.08±0.42 86.11±0.77 62.67±0.65 67.02±0.42 84.27±0.59
DCCA 94.35±0.54 81.74±0.84 99.74±0.14 83.86±0.34 87.78±0.52 65.08±0.42 87.49±0.84 62.76±0.67 66.89±0.48 84.00±0.49
DAE 94.35±0.54 81.99±0.79 99.80±0.11 83.86±0.32 87.79±0.52 65.05±0.42 85.87±0.56 62.84±0.70 66.59±0.57 84.18±0.43
SVDD 93.64±0.59 76.09±1.51 98.11±0.24 72.86±0.65 82.66±1.08 64.53±0.40 84.81±0.54 61.96±0.47 66.33±0.78 68.33±1.22
PPRD 94.35±0.54 81.13±1.00 99.55±0.20 83.86±0.33 87.78±0.51 65.03±0.42 90.93±0.53 63.51±0.79 67.71±0.40 83.39±0.40
SPRD 94.35±0.54 79.50±0.93 99.61±0.19 83.87±0.33 87.78±0.52 65.01±0.42 90.82±0.63 63.50±0.64 68.62±0.55 84.81±0.44
MODDIS 94.35±0.54 59.00±1.21 78.77±1.73 78.37±0.52 86.71±0.40 64.38±0.42 86.40±1.21 59.42±0.65 63.45±0.53 46.79±1.16
CAAE 93.07±0.50 76.00±1.34 99.29±0.16 74.95±0.45 84.45±0.57 64.52±0.59 87.47±0.56 62.24±0.63 67.78±0.69 73.46±0.86

DBN 95.26±0.50 63.13±0.64 93.81±0.62 84.19±0.28 87.87±0.51 65.85±0.36 84.12±0.85 63.22±0.63 65.25±0.46 79.85±0.36
DGCCA 94.35±0.54 81.31±0.76 99.77±0.14 83.86±0.33 87.78±0.53 65.04±0.42 86.56±0.98 63.00±0.72 67.55±0.61 83.49±0.67
DSV-B 93.66±0.60 76.11±1.46 98.46±0.29 73.18±0.59 83.38±1.02 64.52±0.40 84.31±0.65 62.17±0.49 66.90±0.90 68.03±1.94
CLAS 93.96±0.53 78.59±1.33 87.80±2.46 57.83±1.14 74.89±1.30 63.27±0.48 68.13±1.43 - 54.44±0.38 58.13±0.61

TABLE IV: AUROC (%) comparison on the subsets of MedMNIST.

Type Path Derma OCT Pneumonia Retina Breast Axial Coronal Sagittal

Fusion

SUM 83.00 70.29 59.39 76.13 65.24 72.67 94.29 95.17 91.51
MAX 82.69 70.32 60.14 75.45 65.37 72.71 94.28 95.16 91.50
NN 82.82 70.27 59.24 77.27 64.96 72.57 94.29 95.17 91.48
TF 82.62 70.13 59.43 75.31 64.90 72.40 94.32 95.16 91.47

Alignment
DIS 83.85 70.21 58.68 78.63 64.85 72.71 94.21 95.16 91.43
SIM 84.31 70.28 58.95 76.17 64.89 72.87 94.28 95.16 91.45
DCCA 83.93 69.99 60.78 75.90 64.79 72.69 94.36 95.15 91.41

Tailored DAE 82.41 66.53 60.77 75.68 61.92 72.90 93.20 94.34 90.41
SVDD 75.66 59.30 55.61 72.97 58.91 55.85 68.52 58.78 71.47

Self-supervision PPRD 85.16 70.08 62.33 77.83 65.12 72.72 94.26 95.17 91.47
SPRD 87.55 70.49 63.23 76.26 65.02 72.66 94.36 95.17 91.52

MDOD MODDIS 78.52 67.20 50.39 72.74 63.49 71.04 91.22 94.43 90.39
CAAE 82.50 67.21 61.86 75.40 63.59 72.79 93.34 94.68 90.83

TABLE V: AUROC (%) comparison on partial subsets of MvTecAD.

Type Bottle Cable Capsule Carpet Grid Hazelnut Leather Metal Nut

Fusion

SUM 97.30 91.87 91.82 94.18 63.24 98.00 99.76 88.66
MAX 97.30 92.17 92.58 94.34 62.16 97.75 99.66 87.05
NN 97.30 92.26 88.83 94.34 61.15 96.71 99.56 87.68
TF 97.30 90.89 89.19 94.22 61.15 97.32 99.66 87.93

Alignment
DIS 97.30 91.51 88.35 94.18 62.91 96.54 99.80 89.00
SIM 97.30 91.85 90.15 94.22 62.57 97.00 99.76 88.51
DCCA 97.30 91.87 90.19 94.30 62.82 97.29 99.80 89.15

Tailored DAE 97.22 84.15 69.80 93.42 58.81 81.43 99.08 66.96
SVDD 94.92 63.87 59.15 93.98 64.16 72.36 97.59 59.38

Self-supervision PPRD 97.30 92.93 91.54 94.02 62.82 97.11 99.69 88.81
SPRD 97.30 92.28 91.26 94.18 59.23 97.57 99.69 89.10

MDOD MODDIS 96.98 73.84 64.74 93.86 59.40 67.07 98.06 43.89
CAAE 97.06 85.16 76.75 95.02 58.15 93.25 99.32 71.65

[20] I. Golan and R. El-Yaniv, “Deep anomaly detection using geometric
transformations,” in Advances in Neural Information Processing Sys-
tems, 2018, pp. 9758–9769.

[21] L. Bergman and Y. Hoshen, “Classification-based anomaly detection for
general data,” in International Conference on Learning Representations,
2019.
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TABLE VI: AUROC (%) comparison on partial subsets of MvTecAD.

Type Pill Screw Tile Toothbrush Transistor Wood Zipper

Fusion

SUM 82.19 68.15 99.64 91.39 93.46 91.58 96.17
MAX 81.29 69.17 99.57 91.39 93.00 91.58 95.25
NN 82.87 67.21 99.60 91.11 92.25 91.40 96.03
TF 83.33 68.37 98.88 89.72 91.38 91.49 95.09

Alignment
DIS 83.14 66.84 99.68 90.28 91.79 91.58 96.32
SIM 83.61 67.43 99.64 91.39 92.79 91.58 95.96
DCCA 83.63 71.49 99.64 90.00 92.21 91.58 95.88

Tailored DAE 68.99 54.09 97.04 78.33 80.96 89.47 86.66
SVDD 60.47 50.83 93.36 21.94 69.92 90.88 81.70

Self-supervision PPRD 80.17 71.33 99.64 90.56 92.50 91.58 92.99
SPRD 81.48 71.35 99.64 90.83 92.25 91.58 94.75

MDOD MODDIS 62.58 50.13 94.59 65.83 81.12 92.02 81.12
CAAE 79.00 56.63 99.60 77.22 88.37 91.14 89.71

TABLE VII: AUPR-normal (%) of different baselines on image based multi-view datasets.

Type MNIST FashionMNIST Cifar10 Cifar100 SVHN Cat vs Dog MedMNIST MvTecAD

Fusion

SUM 91.58 69.39 39.38 24.57 41.04 96.56 59.11 78.04
MAX 91.39 68.87 38.55 23.90 40.74 96.57 59.07 76.98
NN 91.87 69.68 37.18 23.95 41.17 96.72 59.08 75.84
TF 91.58 68.05 38.48 23.64 42.27 96.34 58.75 74.96

Alignment
DIS 91.25 69.24 38.88 24.09 42.70 96.83 59.07 76.92
SIM 91.54 68.96 39.35 24.56 43.44 96.78 59.15 77.17
DCCA 91.67 66.88 31.88 19.96 43.15 91.71 58.57 77.81

Tailored DAE 91.61 68.76 38.26 23.17 43.12 96.85 58.78 77.24
SVDD 88.91 63.48 27.57 15.68 22.40 80.65 56.90 60.94

Self-supervision PPRD 91.20 68.70 39.20 23.67 36.66 96.27 59.93 76.10
SPRD 92.06 70.26 42.14 25.03 40.89 96.51 60.60 76.34

MDOD MODDIS 66.47 45.73 15.15 7.98 11.48 22.98 52.75 56.74
CAAE 90.77 68.73 25.38 14.68 23.06 63.65 57.15 68.35

TABLE VIII: AUPR-abnormal (%) of different baselines on image based multi-view datasets.

Type MNIST FashionMNIST Cifar10 Cifar100 SVHN Cat vs Dog MedMNIST MvTecAD

Fusion

SUM 99.66 99.02 96.86 98.00 95.99 98.97 85.42 95.75
MAX 99.66 99.00 96.69 97.95 95.90 98.98 85.40 95.69
NN 99.67 99.03 96.61 97.95 95.99 99.01 85.48 95.44
TF 99.66 98.99 96.78 97.96 96.02 98.89 85.34 95.34

Alignment
DIS 99.66 99.01 96.80 97.98 96.09 98.96 85.56 95.40
SIM 99.66 99.00 96.87 98.00 96.14 99.01 85.40 95.58
DCCA 99.66 98.92 96.17 97.83 96.09 97.74 85.48 95.65

Tailored DAE 99.66 99.00 96.87 97.98 96.17 99.01 85.37 95.45
SVDD 99.61 98.92 95.91 97.60 94.90 91.63 84.57 91.82

Self-supervision PPRD 99.65 99.02 96.71 97.91 95.63 98.91 85.68 95.65
SPRD 99.67 99.04 96.86 97.95 95.85 99.00 85.70 95.56

MDOD MODDIS 99.24 98.26 94.36 97.11 92.45 68.09 84.05 88.28
CAAE 99.66 99.05 95.80 97.60 94.77 86.94 84.47 92.98

TABLE IX: TNR(%)@95%TPR of different baselines on image based multi-view datasets.

Type MNIST FashionMNIST Cifar10 Cifar100 SVHN Cat vs Dog MedMNIST MvTecAD

Fusion

SUM 81.72 66.76 24.88 22.55 19.53 90.43 43.77 66.27
MAX 81.72 66.74 24.88 22.55 19.48 90.42 43.78 65.54
NN 81.72 66.77 24.88 22.55 19.18 91.58 43.76 65.27
TF 81.72 66.80 24.88 22.55 19.28 89.04 43.76 64.73

Alignment
DIS 81.72 66.74 24.88 22.55 19.12 92.13 43.58 64.10
SIM 81.71 66.74 24.88 22.55 19.42 91.60 43.64 64.68
DCCA 81.69 66.71 24.88 22.55 18.61 67.20 43.74 64.40

Tailored DAE 81.72 66.74 24.88 22.55 19.64 91.95 43.64 64.11
SVDD 82.37 66.87 23.17 20.45 19.86 30.84 39.62 56.36

Self-supervision PPRD 81.72 66.79 24.88 22.55 18.81 89.15 43.80 65.65
SPRD 81.69 66.81 24.88 22.55 19.09 90.41 43.94 65.76

MDOD MODDIS 80.59 65.93 22.68 20.60 16.31 1.91 39.58 41.10
CAAE 82.82 66.97 24.04 20.97 17.62 17.56 40.14 54.48
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TABLE X: AUPR-normal (%) of different baselines on video based multi-view datasets.

Type UCSDped1 UCSDped2 UMN scene1 UMN scene2 UMN scene3 Avenue ShanghaiTech

Fusion

SUM 97.95 96.23 99.39 96.69 97.42 98.13 91.72
MAX 97.77 95.31 99.31 96.41 97.15 98.11 91.00
NN 97.83 95.19 99.53 96.38 97.44 98.05 91.64
TF 97.89 96.04 99.43 96.56 97.48 98.10 91.54

Alignment
DIS 97.66 94.72 99.11 96.28 97.30 98.25 90.51
SIM 97.85 95.43 99.13 96.20 96.94 97.13 91.10
DCCA 97.14 95.52 98.91 96.09 97.19 97.92 90.87

Tailored DAE 97.58 94.59 99.03 96.48 96.72 98.11 90.85
SVDD 94.68 96.14 99.67 92.16 98.62 98.15 86.38

Self-supervision PPRD 97.08 97.30 99.64 95.92 98.96 97.76 84.73
SPRD 97.17 96.85 99.66 96.94 98.57 98.11 87.18

MDOD MODDIS 96.87 95.22 99.71 94.69 98.50 97.80 87.40
CAAE 96.44 96.06 99.70 95.22 98.75 98.34 90.99

TABLE XI: AUPR-abnormal (%) of different baselines on video based multi-view datasets.

Type UCSDped1 UCSDped2 UMN scene1 UMN scene2 UMN scene3 Avenue ShanghaiTech

Fusion

SUM 44.51 72.89 95.36 75.49 80.51 35.67 31.10
MAX 37.86 68.74 94.61 73.89 79.33 31.29 27.41
NN 39.99 68.09 95.03 74.97 80.68 33.58 30.77
TF 44.50 72.34 95.37 75.37 81.09 36.02 30.47

Alignment
DIS 39.85 66.87 94.46 73.93 80.70 41.74 27.09
SIM 44.31 69.54 94.27 73.85 79.04 33.23 28.44
DCCA 33.84 66.77 93.03 73.01 78.91 35.26 28.98

Tailored DAE 39.52 66.45 93.99 74.50 78.77 31.71 27.42
SVDD 29.79 73.50 94.32 69.95 82.95 55.60 26.45

Self-supervision PPRD 39.58 75.30 95.41 72.50 85.24 25.00 15.83
SPRD 41.04 73.81 95.72 74.67 82.02 27.98 19.61

MDOD MODDIS 37.13 65.66 94.82 73.00 82.97 37.05 19.39
CAAE 31.94 68.48 95.44 72.00 82.97 49.24 41.31

TABLE XII: TNR(%)@95%TPR of different baselines on video based multi-view datasets.

Type UCSDped1 UCSDped2 UMN scene1 UMN scene2 UMN scene3 Avenue ShanghaiTech

Fusion

SUM 40.12 61.68 93.87 67.04 77.01 54.68 17.01
MAX 33.27 56.59 92.52 64.70 75.27 49.78 14.39
NN 35.99 57.29 93.36 66.53 77.21 52.56 17.48
TF 39.92 60.82 93.82 67.17 77.07 54.47 16.53

Alignment
DIS 35.37 55.24 92.69 64.94 78.13 46.01 13.82
SIM 40.31 58.63 92.23 65.12 74.23 46.42 14.69
DCCA 30.84 56.04 89.58 63.26 73.71 40.73 18.09

Tailored DAE 35.27 54.10 91.81 66.09 75.30 48.79 14.15
SVDD 23.68 63.64 93.91 60.25 81.25 59.90 16.30

Self-supervision PPRD 38.47 64.21 94.16 63.01 83.13 35.54 4.13
SPRD 39.90 63.33 94.29 65.70 79.75 38.75 8.52

MDOD MODDIS 37.09 53.52 93.70 64.16 80.21 45.85 8.55
CAAE 35.33 61.54 94.54 62.33 81.60 53.81 33.20

TABLE XIII: AUPR-normal (%) of different baselines on selected existing multi-view datasets with random train/test split.

BBC BDGP Caltech20 Citeseer Cora Reuters Wiki AwA NUS-Wide SunRGBD

SUM 75.85±1.47 42.86±1.02 98.98±0.35 36.16±1.42 43.67±1.65 13.87±0.30 39.71±1.42 1.34±0.05 2.69±0.13 17.47±0.45
MAX 75.85±1.46 43.44±1.13 98.89±0.39 36.19±1.37 43.59±1.71 13.80±0.29 39.76±1.55 1.40±0.05 2.82±0.18 17.20±0.42
NN 75.83±1.46 42.57±1.11 98.97±0.38 36.22±1.37 43.55±1.69 13.51±0.37 40.68±1.45 1.37±0.07 2.80±0.19 16.75±0.55
TF 75.82±1.45 42.26±1.19 92.31±3.44 36.43±1.44 43.74±1.66 13.99±0.30 41.80±1.74 1.33±0.09 2.50±0.11 16.29±0.61

DIS 75.84±1.45 43.01±1.10 99.09±0.29 36.26±1.39 43.67±1.71 13.99±0.31 33.76±1.96 1.35±0.04 2.51±0.16 16.20±0.39
SIM 75.84±1.44 42.46±1.06 98.93±0.32 36.42±1.34 43.81±1.74 14.15±0.31 32.24±2.16 1.31±0.06 2.44±0.13 16.17±0.67
DCCA 75.86±1.46 42.77±1.09 98.74±0.44 36.38±1.29 43.80±1.70 14.15±0.34 34.26±1.48 1.32±0.05 2.52±0.22 16.00±0.49

DAE 75.84±1.45 42.89±1.14 99.05±0.33 36.31±1.44 43.93±1.62 13.84±0.28 31.63±1.93 1.33±0.04 2.38±0.10 16.21±0.44
SVDD 73.41±1.37 28.02±2.22 90.94±1.04 27.23±1.45 40.41±2.01 16.94±0.82 31.23±1.58 1.22±0.04 2.34±0.15 5.65±0.39

PPRD 75.84±1.45 45.04±1.11 98.41±0.51 36.13±1.41 43.55±1.71 13.48±0.31 45.11±1.35 1.37±0.05 2.63±0.14 16.96±0.56
SPRD 75.83±1.47 42.30±1.07 98.66±0.53 36.24±1.36 43.52±1.66 13.40±0.32 46.33±1.18 1.39±0.04 2.98±0.24 18.13±0.36

MODDIS 73.78±1.24 16.84±1.34 44.56±1.71 30.79±1.21 41.65±1.65 14.15±0.35 38.72±1.69 0.99±0.02 2.08±0.07 1.97±0.07
CAAE 71.82±1.44 26.99±1.39 96.21±0.67 28.33±1.35 40.50±1.63 15.06±0.46 35.19±1.51 1.26±0.04 2.54±0.13 7.15±0.56



SUBMITTED TO IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, MONTH JUNE, YEAR 2021 7

TABLE XIV: AUPR-abnormal (%) of different baselines on selected existing multi-view datasets with random train/test split.

BBC BDGP Caltech20 Citeseer Cora Reuters Wiki AwA NUS-Wide SunRGBD

SUM 99.40±0.07 97.80±0.14 99.97±0.02 98.36±0.06 98.74±0.09 96.50±0.07 99.41±0.06 99.55±0.01 99.09±0.01 99.53±0.02
MAX 99.40±0.07 97.80±0.16 99.95±0.04 98.36±0.06 98.74±0.09 96.50±0.07 99.42±0.05 99.55±0.01 99.11±0.02 99.52±0.02
NN 99.40±0.07 97.77±0.14 99.97±0.02 98.36±0.06 98.74±0.09 96.50±0.07 99.41±0.03 99.55±0.01 99.11±0.02 99.52±0.01
TF 99.40±0.07 97.76±0.15 99.62±0.24 98.36±0.06 98.74±0.09 96.50±0.07 99.43±0.07 99.55±0.01 99.08±0.01 99.51±0.02

DIS 99.40±0.07 97.89±0.16 99.98±0.01 98.36±0.06 98.74±0.09 96.50±0.07 99.27±0.06 99.55±0.01 99.05±0.02 99.51±0.02
SIM 99.40±0.07 97.88±0.15 99.97±0.02 98.36±0.06 98.74±0.09 96.51±0.07 99.25±0.06 99.54±0.01 99.05±0.02 99.50±0.02
DCCA 99.40±0.07 97.88±0.15 99.97±0.02 98.36±0.06 98.74±0.09 96.51±0.07 99.33±0.06 99.55±0.01 99.05±0.02 99.50±0.02

DAE 99.40±0.07 97.90±0.15 99.98±0.02 98.36±0.06 98.74±0.09 96.50±0.07 99.23±0.05 99.55±0.01 99.03±0.02 99.51±0.01
SVDD 99.33±0.07 97.29±0.23 99.74±0.05 97.04±0.11 98.10±0.13 96.39±0.09 99.14±0.05 99.53±0.01 99.17±0.05 98.81±0.08

PPRD 99.40±0.07 97.69±0.17 99.92±0.05 98.36±0.06 98.74±0.09 96.50±0.07 99.55±0.04 99.55±0.01 99.12±0.01 99.48±0.01
SPRD 99.40±0.07 97.49±0.17 99.93±0.04 98.36±0.06 98.74±0.09 96.50±0.07 99.53±0.04 99.56±0.01 99.14±0.02 99.53±0.02

MODDIS 99.35±0.07 94.57±0.21 97.33±0.21 97.79±0.06 98.68±0.10 96.43±0.07 99.22±0.10 99.51±0.01 98.90±0.03 97.62±0.07
CAAE 99.24±0.05 97.24±0.18 99.90±0.03 97.34±0.09 98.46±0.11 96.41±0.09 99.33±0.05 99.55±0.01 99.19±0.04 99.06±0.03

TABLE XV: TNR(%)@95%TPR of different baselines on selected existing multi-view datasets with random train/test split.

BBC BDGP Caltech20 Citeseer Cora Reuters Wiki AwA NUS-Wide SunRGBD

SUM 67.82±3.12 33.88±2.94 99.77±0.20 34.13±1.80 49.94±3.05 24.20±0.72 62.45±2.44 12.91±0.89 21.93±1.45 44.33±1.47
MAX 67.82±3.12 33.64±2.81 99.72±0.20 34.14±1.82 50.08±3.08 24.20±0.72 62.86±2.23 13.01±1.02 21.78±1.41 43.26±2.09
NN 67.81±3.13 33.01±2.60 99.75±0.31 34.18±1.84 50.00±3.12 24.20±0.72 62.73±2.34 12.96±0.88 22.02±1.62 43.68±1.35
TF 67.81±3.12 32.81±3.24 89.34±7.64 34.16±1.84 50.00±3.06 24.20±0.72 62.82±3.09 12.99±0.81 21.17±1.52 43.35±2.19

DIS 67.82±3.12 35.09±2.95 99.78±0.12 34.13±1.81 50.02±3.01 24.20±0.72 56.84±3.25 12.81±0.82 21.04±1.48 42.03±1.44
SIM 67.82±3.13 35.41±3.78 99.79±0.12 34.13±1.81 49.95±3.04 24.20±0.72 56.08±2.90 12.82±0.75 21.18±1.31 42.30±3.50
DCCA 67.82±3.13 35.85±3.83 99.63±0.34 34.10±1.82 50.02±3.12 24.20±0.72 59.05±3.18 12.89±0.83 21.09±1.70 42.20±2.43

DAE 67.82±3.12 35.65±3.14 99.83±0.09 34.13±1.81 49.98±3.09 24.20±0.72 56.40±2.90 12.76±0.78 20.93±1.67 42.10±1.20
SVDD 66.32±4.10 28.64±3.25 88.91±1.95 18.64±2.33 32.48±3.35 20.68±1.34 52.17±2.56 13.05±1.20 18.95±1.18 16.82±1.17

PPRD 67.82±3.12 29.66±3.54 99.44±0.36 34.13±1.80 50.02±3.07 24.20±0.72 70.22±2.62 12.94±0.84 21.68±1.39 38.97±1.99
SPRD 67.82±3.13 27.81±2.42 99.66±0.25 34.08±1.80 50.07±3.06 24.20±0.72 69.30±2.43 13.17±0.87 22.31±1.88 43.60±2.74

MODDIS 66.26±3.08 13.18±1.29 33.24±3.99 25.72±1.52 45.48±3.24 22.40±0.82 56.43±4.52 13.13±1.19 19.54±1.13 6.68±0.44
CAAE 63.68±3.38 26.91±2.20 97.44±0.89 21.30±1.64 40.56±4.08 21.05±1.43 60.12±2.34 13.72±1.40 20.11±1.50 21.69±1.65

TABLE XVI: AUPR-normal (%) of different late fusion strategies on selected existing multi-view datasets.

BBC BDGP Caltech20 Citeseer Cora Reuters Wiki AwA NUS-Wide SunRGBD

LF-AVG 75.84±1.45 42.89±1.14 99.05±0.33 36.31±1.44 43.93±1.62 13.84±0.28 31.63±1.93 1.33±0.04 2.38±0.10 16.21±0.44
LF-MIN 72.62±1.59 43.20±1.09 97.05±0.58 31.54±1.17 34.60±1.58 13.59±0.29 18.22±1.24 1.24±0.06 2.08±0.09 14.23±0.57
LF-MAX 65.51±0.93 27.30±7.88 66.77±3.09 19.94±3.08 22.33±3.65 10.31±0.15 46.49±1.95 0.85±0.02 1.98±0.06 11.08±0.50

TABLE XVII: AUPR-abnormal (%) of different late fusion strategies on selected existing multi-view datasets.

BBC BDGP Caltech20 Citeseer Cora Reuters Wiki AwA NUS-Wide SunRGBD

LF-AVG 99.40±0.07 97.90±0.15 99.98±0.02 98.36±0.06 98.74±0.09 96.50±0.07 99.23±0.05 99.55±0.01 99.03±0.02 99.51±0.01
LF-MIN 99.27±0.08 97.90±0.18 99.95±0.03 98.19±0.07 98.20±0.11 96.24±0.07 98.88±0.08 99.52±0.01 98.92±0.02 99.40±0.02
LF-MAX 99.42±0.04 93.61±0.20 98.80±0.18 95.08±0.10 95.73±0.08 95.99±0.04 99.50±0.06 99.44±0.01 99.11±0.02 99.45±0.01

TABLE XVIII: TNR(%)@95%TPR of different late fusion strategies on selected existing multi-view datasets.

BBC BDGP Caltech20 Citeseer Cora Reuters Wiki AwA NUS-Wide SunRGBD

LF-AVG 67.82±3.12 35.65±3.14 99.83±0.09 34.13±1.81 49.98±3.09 24.20±0.72 56.40±2.90 12.76±0.78 20.93±1.67 42.10±1.20
LF-MIN 62.41±3.59 34.18±3.67 98.03±1.78 35.46±2.34 36.23±2.32 20.12±0.77 48.37±2.42 11.51±0.54 17.98±1.28 35.70±3.22
LF-MAX 71.53±3.39 9.31±0.64 61.33±3.18 23.42±0.70 31.19±1.07 18.63±0.77 69.33±3.38 12.30±0.67 17.27±1.48 41.28±0.94
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TABLE XIX: AUPR-normal (%) of different baselines on
existing multi-view/multi-modal datasets with given train/test
set split.

Type YtFace CMU-MOSEI DirverAD

Fusion

SUM 50.54 18.08 97.59
MAX 50.02 18.05 97.31
NN 50.17 18.06 95.94
TF 41.18 18.00 97.52

Alignment
DIS 50.27 16.25 97.74
SIM 50.59 18.04 97.81
DCCA 43.00 17.83 97.77

Tailored DAE 49.91 18.14 97.08
DSV 50.72 16.81 88.55

Self-supervision PPRD 50.82 17.81 95.23
SPRD 49.66 17.82 96.69

MDOD MODDIS 30.69 17.75 98.14
CAAE 49.86 20.95 95.59

TABLE XX: AUPR-abnormal (%) of different baselines on
existing multi-view/multi-modal datasets with given train/test
set split.

Type YtFace CMU-MOSEI DirverAD

Fusion

SUM 99.48 83.69 93.46
MAX 99.47 83.64 91.37
NN 99.48 83.73 81.61
TF 99.42 83.74 93.57

Alignment
DIS 99.49 83.44 94.05
SIM 99.49 83.77 94.45
DCCA 99.47 83.86 94.66

Tailored DAE 99.49 83.92 89.52
DSV 99.56 83.26 77.20

Self-supervision PPRD 99.49 83.79 83.33
SPRD 99.46 83.67 88.92

MDOD MODDIS 99.29 83.77 95.50
CAAE 99.52 86.36 81.15

TABLE XXI: TNR(%)@95%TPR of different baselines on
existing multi-view/multi-modal datasets with given train/test
set split.

Type YtFace CMU-MOSEI DirverAD

Fusion

SUM 43.54 12.30 82.65
MAX 42.00 12.27 78.37
NN 43.34 13.28 43.63
TF 41.31 12.15 81.09

Alignment
DIS 43.53 12.81 84.51
SIM 43.70 13.03 85.43
DCCA 43.41 14.02 86.56

Tailored DAE 43.34 13.99 77.64
DSV 49.03 8.18 51.03

Self-supervision PPRD 42.83 13.56 56.94
SPRD 42.81 13.15 68.29

MDOD MODDIS 38.05 12.90 88.58
CAAE 44.03 15.39 52.51
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