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I. CLASSIC AD METHODS

As a classic problem, AD has constantly received attention
from the machine learning community. Classic solutions to AD
usually fall into the following categories: 1) Boundary based
methods. Such methods learn to establish a compact decision
boundary to enclose training data from the given normal class,
while this boundary is then used to separate the normal and
abnormal class. Two most representative methods are one-class
support vector machine (OCSVM) [1]] and support vector data
description (SVDD) [2]|. 2) Density based methods. Methods
like one-class Gaussian Mixture Model (OCGMM) [3] and
one-class Parzen density estimation [4] usually estimate the
data density distribution by given training data of the normal
class, and detect data at the sparse region as anomalies. 3)
Reconstruction based methods. Such methods assume that data
from normal class can be well reconstructed from its low-
dimensional embedding, while poor reconstruction would be
observed on the untrained abnormal class. The reconstruction
can be performed by methods like principal component anal-
ysis (PCA) [5] or shallow auto-encoder network (AE) [6]. In
addition to the above three categories, some creative solutions
are also proposed to solve AD problem. To name a few,
Juszczak et al. [7] propose to build minimal spanning tree
(MST) to model the normal class. Angiulli [8] introduces a
series of prototypes to describe the domain of normal class.
Désir et al. [9] customize the random forest model to AD
and propose one-class random forest. Classic AD methods are
often intuitive, yet they typically handle with relatively simple
tabular data from a single view.

II. CLASSIC MULTI-VIEW LEARNING METHODS

Multi-view learning has been recognized as a vital realm for
a long period. It explores complementary clues of multiple data
views, so as to boost the performance of a certain task. Many
regular tasks have already been discussed in the context of
the multi-view case, e.g. multi-view classification [10], multi-
view clustering [11]]) and multi-view feature selection [12].
Those tasks then give rise to many multi-view learning models,
such as multi-view support vector machine [13[], multi-view
subspace clustering [14], multiple kernel k-means [15]], etc.
A comprehensive review of classic multi-view learning can
be found in [16]. In many works, multi-view learning tasks
are often formulated as a convex or non-convex optimization
problem that can be solved by certain classic optimization
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strategies. However, many of such solutions are of high com-
putational complexity, making it hard to scale them to those
large-scale tasks. Besides, compared with deep learning based
methods, they also require high-quality features extraction in
advance, which is the foundation of their effectiveness and
efficiency.

III. OTHER MULTI-VIEW DEEP AD BASELINES

In addition to 11 baseline solutions that have been presented
in the manuscript, we also design 4 additional baseline solu-
tions, as introduced below. The evaluation results of them are
reported in Table

A. Deep Belief Networks based Solution

Apart from those fusion functions given in the manuscript,
multi-view fusion can also be implemented by the classic
restricted boltzmann machines (RBM) from the energy view
[17]. To be more specific, a RBM is added to the top of all
encoders to perform fusion [18]]. With the concatenation of
embeddings of all views v = Cat({h("}Y_)), it serves as
the input to the visible layer of the RBM. To learn the joint
embedding h given by RBM’s hidden layer, it is required to
minimize the following energy function:

E(vih)=—v' -W-h—b' .v—a' -h (1)

where W, a, b are learnable parameters of the RBM. A joint
probability of v and h can be calculated by:

P(v,h) = éexp(—E(v, h)) @)

where C' is the partition function for normalization. The
maximization of joint probability (the minimization of energy)
can be realized by gradient descent and contrastive divergence.
After the minimization, the joint embedding h and the recon-
struction of v can both be obtained by sampling. In addition
to the fusion function, the encoders and decoders of the model
can also be implemented by RBMs. In this way, we can stack
the RBMs into a deep belief network (DBN). However, DBN
is not specifically designed for more complex data with certain
structures (e.g. 2D images), which restricts its application to
many practical scenarios.

B. Generalized DCCA based Solution

It is easy to discover that alignment functions given in the
manuscript require to compute the alignment for each view
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pair, and then add their results up to obtain the final alignment
measurement. By contrast, a deep generalized canonical corre-
lation analysis (DGCCA) [[19]] is proposed to naturally adapt to
the alignment of any number of views. The key to generalized
correlation based alignment is to encourage embeddings from
all views to be closed to a common representation G. Given
the linear mapping parameterized by U(*) and the embedding
matrix H®) for the v, View, it aims to sovle the following
optimization problem:

\4
1 ;
. (W) pr) 2 Ta—
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in which I, is the identity matrix with size r. The details to
solve the goal in Eq. [3]is shown in [19]]. In our experiments,
the performance of DGCCA is shown to be similar to DCCA,
so we leave it to supplementary material.

C. Soft-boundary DSVDD based Solution

By contrast, soft-boundary DSVDD takes the noises in
training data into account, and introduces a soft boundary to
allow noisy data not to be mapped into the hyper-sphere. It
solves the optimization problem below:

min

N
2, 1 @) (4 () 2 p2
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g
+ 51657117
(C))

where R represents the radius of hyper-sphere, and v > 0
controls the softness of the boundary. Likewise, the above
optimization problem can also be solved by gradient descent.
Soft-boundary DSVDD can be tailored for multi-view deep
AD by the same way of simplified DSVDD, but it typically
performs worse than the simplified version.

D. Discriminative Self-supervision based Solution

Discriminative pretext task based self-supervised learning
is an newly-emerging technique [20]. Instead of conducting
generation, discriminative pretext tasks require to perform
representation learning by classification, because discrimina-
tive DNNs are usually considered to be more powerful than
generative DNNs in representation learning. As AD only has
training data from a single class, multiple pseudo classes need
to be created first to enable classification, which is the key to
discriminative pretext tasks. Specifically, we define a transfor-
mation set 7 = {T1,T5, -, T, }. For each transformation
T; € T, it can transform a multi-view datum {:)(55))}1‘)/:1 into
a new single-view datum %,, = T,({x}Y_,). After the
transformation, all data yielded by the transformation 7; are
collected as the iy, pseudo class C, = {%X;,}N ;. In this
way, a set of m pseudo classes can be collected as {C]}";.
Subsequently, those pseudo classes can be used to train a
discriminative DNNs by standard cross-entropy loss. As to

. . . 1 .
inference, a multi-view datum {xge’gt V_, is first transformed

into m new single-view datum {X; jes;}7",, Golan et al. [20]

show that a simple way to obtain the score of xgzgt can be:
v LQ~ oo
S({xieit X:l) = a le(l|xi,test) (5)

where p(i|X; ¢es¢) refers to the confidence that X; 4.5 belongs
to the %;;, pseudo class. When it comes to the design of
T;, we are inspired by [21]] and adopt a simple but generic
method: we first map the input data of each view to D-
dimensional embeddings by random projection, then embed-
dings of different views are permuted by a certain order
and concatenated into a joint embedding. By varying the
parameters of random projection or the permutation order,
we can obtain multiple transformations in 7. In this way, we
can not only create sufficient transformations to create pseudo
classes, but also exploit the unique feature of multi-view data.
However, although discriminative self-supervised learning has
achieved remarkable success in other realms, our empirical
evaluations show that it is usually inferior to generative self-
supervised learning in multi-view deep AD.

IV. DETAILS OF MULTI-VIEW DATASETS

In Table |If and [II} we showcase the detailed information of
all multi-view benchmark datasets used in this paper, including
the total number of samples, number of views and the total
number of classes.

TABLE I: Details of multi-view deep one-class classification
datasets. MedMNIST and MvTecAD are introduced in Table
since they are composed of multiple subsets.

Dataset Numper of
Samples Views Classes
BBC 2012 2 5
BDGP 2500 3 5
Caltech20 2386 6 20
Citeseer 3312 4 6
Cora 2708 4 7
Classic Reuters 7200 5 6
Wiki 2866 2 10
AwA 30475 6 50
NUS-Wide 23953 5 31
SunRGBD 10335 2 45
YtFace 101499 11 31
MNIST 70000 6 10
FashionMNIST 70000 6 10
Cifar10 60000 6 10
Tmage Cifar100 60000 6 10
SVHN 99289 6 10
Cat_vs_Dog 24931 4 2
CMU-MOSE 23500 3 7
DriverAD 453750 4 2
MedMNIST - - -
MvTecAD
UCSDped1 143259 2 2
UCSDped2 64061 2 2
UMN_scenel 19648 2 2
Video UMN_scene2 53561 2 2
UMN_scene3 34294 2 2
Avenue 219026 2 2
ShanghaiTech 1419412 2 2

V. IMPLEMENTATION DETAILS

For tabular input data, we leverage a fully-connected DNN
to encode them into latent embeddings. The fully-connected
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TABLE II: Details of MedMNIST and MvTecAD datasets.

Dataset N”"Tber of
Samples ~ Views  Classes
Path 107180 6 9
Derma 10015 6 7
OCT 109309 6 4
Pneumonia 5856 6 2
MedMNIST Retina 1600 6 5
Breast 780 6 2
Axial 58850 6 11
Coronal 25221 6 11
Sagittal 25221 6 11
Bottle 292 4 2
Cable 374 4 2
Capsule 351 4 2
Carpet 397 4 2
Grid 342 4 2
Hazelnut 501 4 2
Leather 369 4 2
MvTecAD Metal Nut 335 4 2
Pill 434 4 2
Screw 480 4 2
Tile 347 4 2
Toothbrush 102 4 2
Transistor 313 4 2
Wood 326 4 2
Zipper 391 4 2

DNN has 512 — 128 — 32 hidden layers, which are equipped
with batch-normalization (bn) and ReLu activation function
(relu). For 2-D input data on video based multi-view datasets,
we implement the encoders by a convolutional neural networks
with the following architecture: conv(3,2) — bn — relu —
conv(3,2) —bn — relu — conv(3,2) — bn — relu — reshape —
fe(2048,32), where conwv(3,2) denotes the 2-D convolution
operation with kernel size 3 and stride 2 and fc denotes
a fully-connected layer. As to decoders, we simply adopt a
symmetric DNN architecture to realize decoding, while the
decoders for 2-D input data are implemented by deconvolution
operation. As to training, since the fine-tuning of hyperparam-
eters for AD is difficult, we empirically set the training epochs
of video based multi-view datasets to be 5 or 10, while the
rest of datasets are set to be 20. The batch size is typically
selected from 16, 32, 64 and 128, according to the size of
training set. For each dataset, the batch size is fixed for all
baseline solutions. Meanwhile, the default Adam optimizer in
PyTorch toolboxﬂ is used. The weight of alignment loss is
set to a = 0.1. The weight of Ly-norm regularization is set
to 0. For tensor fusion, the rank R is set to 8. For energy
based fusion, we leverage a deep belief network that share the
same hidden layers with the aforementioned fully-connected
encoder. For similarity based alignment, we simply set the
margin to be 0. For generative self-supervision based methods,
we adopt a fully-connected neural network to perform fusion.
For the discriminative self-supervised method, we use 16,
3, 4, 1 random projections for data with 2-view, 3-view, 4-
view and more than 4 views respectively, which result in
16x2! =32,6x3! = 36,2x4! =48 and 1 x V! = V! pseudo
classes for four cases. The classifier shares the same hidden
layer architecture with the previous fully-connected encoder
network, and a fully-connected layer and a softmax layer are
added to its top for classification.

Ihttps://pytorch.org/

VI. ADDITIONAL EXPERIMENTAL RESULTS

Table reports the performance comparison on selected
existing multi-view datasets between four miscellaneous base-
lines in this supplementary material and eleven ones in the
manuscript (DBN, DGCCA, DSV-B, CLAS denote the base-

lines introduced in Sec. respectively). Meanwhile,
Table and [VI] present the AUROC results on the subsets
of MedMNIST and MvTecAD. Additionally, we show the
performance of different baselines and late fusion strategies
under AUPR and TNR@95%TPR metrics over all datasets in
Table [VII - XVIIL
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TABLE II: AUROC (%) comparison on selected existing multi-view datasets between thirteen baselines in the manuscript and
four miscellaneous ones, including deep belief networks based solution (DBN), generalized DCCA based solution (DGCCA),
Soft-boundary DSVDD based solution (DSV-B) and discriminative self-supervision based solution (CLAS).

BBC BDGP Caltech20 Citeseer Cora Reuters Wiki AwWA NUS-Wide SunRGBD
SUM 94351054 81271077  99.76 1011 83851033  87.7910s53  65.051043 88.8410s0  63.154072  67.9410s54  84.81ioss
MAX 943541054  81.36+084  99.69+017  83.864033  87.79+0s1 65041042  88.93106a 63341077  68.254049  84.6310s51
NN 94351054 80981084 99771011 83871034 87784052 65.031042  88.8510s1 63271071 68.564047  84.55t04
TF 94354054 81.03 1036 97.79+130 83.87+032 87.78 4052 65.05-4+0.42 89.24 1103 62.76+0.72 67.24 1056 84.37 1056
DIS 94354054  82.0310s0  99.821008  83.864034  87.7940s3 65054042  86.581077 62964067  66.91toes  84.161043
SIM 94351054  81.8510s0 99771012  83.871032  87.7810s3 65084042  86.111077  62.671065  67.021042  84.271059
DCCA 94351054  81.741084 99741014  83.861034  87.78 1052  65.0841042 87494084 62761067  66.89+04s 84.00+0.49
DAE 94354054  81.994070  99.80+011  83.86+03  87.794052  65.054042  85.8740s56  62.844070  60.594057  84.184043
SVDD 9364105 76094151 98114024  72.864065 82.664108 64534040 8481ioss  61.964047 66331078 6833112
PPRD 9435105 81134100 99554020 83.86403 87784051 65034042 90934053 63514079 67711040 83.391040
SPRD 94354054 79504095  99.61to19 83874033  87.7810s2 65014042 90.821063  63.501064  68.621055  84.81104s
MODDIS 94354054 5900412 78774175 78374052 86714040 6438404 8640412 59424065 63454055 46794116
CAAE 93.07:(:()_5() 76-00;{:1.34 99.29;{:0.16 74.95:{:0.45 84.45;{:0_57 64452:{:0.59 87.47:{:0‘55 62.24:{:0.53 67~78j:0.69 73.46:(:0_36
DBN 95264050 63.134064 93814062  84.194028  87.87+40s1 65.851036  84.1210s85 63221063 65.2541046  79.85+036
DGCCA 94354054 81.314076 99.77 +0.14 83.861033 87.78 4053 65.04 1042 86.56 4098 63.00-+0.72 67.55+0.61 83.49.1 067
DSV-B 93.661000 76114145 98464020 73184050 83384100 64524040 8431s0gs 62174040 66901050  68.03110
CLAS 93964053 78591133  87.80+246  57.831104 74894130 63271045 68131143 - 54441038  58.13 1061

TABLE IV: AUROC (%) comparison on the subsets of MedMNIST.

Type Path Derma  OCT  Pneumonia  Retina  Breast  Axial = Coronal  Sagittal
SUM 83.00 7029  59.39 76.13 6524 7267 9429  95.17 91.51
Fusion MAX 82.60 7032 60.14 75.45 6537 7271 9428  95.16 91.50
NN 8282 7027 594 77.27 6496 7257 9429  95.17 91.48
TF 8262  70.13  59.43 75.31 6490 7240 9432  95.16 91.47
DIS 8385 7021  58.68 78.63 6485 7271 9421  95.16 91.43
Alignment SIM 8431 7028 5895 76.17 6489 7287 9428  95.16 91.45
DCCA 8393 69.99  60.78 75.90 6479 7269 9436 95.15 91.41
Tailored DAE 8241 6653  60.77 75.68 6192 7290 9320 9434 90.41
arlore SVDD 7566 5930  55.61 72.97 5891 5585  68.52  58.78 71.47
Self . PPRD 85.16  70.08  62.33 77.83 65.12 7272 9426 95.17 91.47
CH-SUpervISIon  gprp 8755 7049 6323 76.26 65.02 7266 9436 95.17 91.52
MDOD MODDIS 7852 6720  50.39 72.74 6349 7104 9122 9443 90.39
CAAE 8250 6721  61.86 75.40 63.59 7279 9334 9468 90.83
TABLE V: AUROC (%) comparison on partial subsets of MvTecAD.
Type Bottle  Cable  Capsule  Carpet Grid Hazelnut  Leather  Metal Nut
SUM 9730  91.87  91.82 9418 6324  98.00 99.76 88.66
Fusi MAX 97.30  92.17  92.58 9434 6216 9775 99.66 87.05
usion NN 9730 9226  88.83 9434 61.15 96.71 99.56 87.68
TF 9730  90.89  89.19 9422  61.15 97.32 99.66 87.93
DIS 9730 9151 8835 94.18 6291 96.54 99.80 89.00
Alignment SIM 9730  91.85  90.15 9422 6257  97.00 99.76 88.51
DCCA 97.30  91.87  90.19 9430  62.82  97.29 99.80 89.15
Tailored DAE 9722 8415  69.80 9342  58.81 81.43 99.08 66.96
arlore SVDD 9492 6387  59.15 9398  64.16 72.36 97.59 59.38
Self-supervision  PPRD 97.30 9293 9154 9402 6282  97.11 99.69 88.81
CHESUPEIVISIOn gpRD 9730 9228  91.26 94.18  59.23 97.57 99.69 89.10
MDOD MODDIS 9698  73.84 6474 9386 5940  67.07 98.06 43.89
CAAE 97.06  85.16  176.75 9502  58.15 93.25 99.32 71.65

[20] 1. Golan and R. El-Yaniv, “Deep anomaly detection using geometric
transformations,” in Advances in Neural Information Processing Sys-
tems, 2018, pp. 9758-9769.

[21] L. Bergman and Y. Hoshen, “Classification-based anomaly detection for
general data,” in International Conference on Learning Representations,
2019.
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TABLE VI: AUROC (%) comparison on partial subsets of MvTecAD.

Type Pill Screw Tile Toothbrush Transistor Wood Zipper
SUM 82.19 68.15 99.64 91.39 93.46 91.58 96.17

Fusion MAX 81.29 69.17 99.57 91.39 93.00 91.58 95.25
NN 82.87 67.21 99.60 91.11 92.25 91.40 96.03

TF 83.33 68.37 98.88 89.72 91.38 91.49 95.09

DIS 83.14 66.84 99.68 90.28 91.79 91.58 96.32

Alignment SIM 83.61 67.43 99.64 91.39 92.79 91.58 95.96
DCCA 83.63 71.49 99.64 90.00 92.21 91.58 95.88

Tailored DAE 68.99 54.09 97.04 78.33 80.96 89.47 86.66
alore SVDD 6047  50.83 9336 21.94 69.92 90.88  81.70
Self-supervision  PPRD 80.17 7133 99.64 90.56 92.50 9158  92.99
P SPRD 81.48 71.35 99.64 90.83 92.25 91.58 94.75
MDOD MODDIS 62.58 50.13 94.59 65.83 81.12 92.02 81.12
CAAE 79.00 56.63 99.60 77.22 88.37 91.14 89.71

TABLE VII: AUPR-normal (%) of different baselines on image based multi-view datasets.

Type MNIST  FashionMNIST  Cifarl0  Cifarl00 SVHN  Cat_vs_Dog MedMNIST  MvTecAD
SUM 91.58 69.39 39.38 24.57 41.04 96.56 59.11 78.04
Fusion MAX 91.39 68.87 38.55 23.90 40.74 96.57 59.07 76.98
usto NN 91.87 69.68 37.18 23.95 41.17 96.72 59.08 75.84
TF 91.58 68.05 38.48 23.64 4227 96.34 5875 74.96
DIS 91.25 69.24 38.88 24.09 42.70 96.83 59.07 76.92
Alignment SIM 91.54 68.96 39.35 24.56 4344 96.78 59.15 77.17
DCCA 91.67 66.88 31.88 19.96 43.15 91.71 58.57 77.81
Tailored DAE 91.61 68.76 38.26 23.17 43.12 96.85 58.78 77.24
SVDD 88.91 63.48 27.57 15.68 22.40 80.65 56.90 60.94
Self-supervision  PPRD 91.20 68.70 39.20 23.67 36.66 96.27 59.93 76.10
“Supervis SPRD 92.06 70.26 42.14 25.03 40.89 96.51 60.60 76.34
MDOD MODDIS 6647 4573 15.15 7.98 11.48 22.98 5275 56.74
CAAE 90.77 68.73 2538 14.68 23.06 63.65 57.15 68.35

TABLE VIII: AUPR-abnormal (%) of different baselines on image based multi-view datasets.

Type MNIST  FashionMNIST  Cifarl0  Cifarl00  SVHN  Cat_vs_Dog  MedMNIST  MvTecAD
SUM 99.66 99.02 96.86 98.00 95.99 98.97 85.42 95.75
Fusion MAX 99.66 99.00 96.69 97.95 95.90 98.98 85.40 95.69
) NN 99.67 99.03 96.61 97.95 95.99 99.01 85.48 95.44
TF 99.66 98.99 96.78 97.96 96.02 98.89 85.34 95.34
DIS 99.66 99.01 96.80 97.98 96.09 98.96 85.56 95.40
Alignment SIM 99.66 99.00 96.87 98.00 96.14 99.01 85.40 95.58
DCCA 99.66 98.92 96.17 97.83 96.09 97.74 85.48 95.65
Tailored DAE 99.66 99.00 96.87 97.98 96.17 99.01 85.37 95.45
SVDD 99.61 98.92 95.91 97.60 94.90 91.63 84.57 91.82
Self-supervision PPRD 99.65 99.02 96.71 97.91 95.63 98.91 85.68 95.65
P SPRD 99.67 99.04 96.86 97.95 95.85 99.00 85.70 95.56
MDOD MODDIS 99.24 98.26 94.36 97.11 92.45 68.09 84.05 88.28
CAAE 99.66 99.05 95.80 97.60 94.77 86.94 84.47 92.98

TABLE IX: TNR(%)@95%TPR of different baselines on

image based multi-view datasets.

Type MNIST  FashionMNIST  Cifarl0  Cifarl00 SVHN  Cat_vs_Dog  MedMNIST = MvTecAD
SUM 81.72 66.76 24.88 2255 19.53 90.43 43.77 66.27
Fusion MAX 81.72 66.74 24.88 22.55 19.48 90.42 4378 65.54
ust NN 81.72 66.77 24.88 22.55 19.18 91.58 43.76 65.27
TF 81.72 66.80 24.88 2255 19.28 89.04 43.76 64.73
DIS 81.72 66.74 24.88 22.55 19.12 92.13 4358 64.10
Alignment SIM 81.71 66.74 24.88 2255 19.42 91.60 43.64 64.68
DCCA 81.69 66.71 24.88 2255 18.61 67.20 4374 64.40
Tailored DAE 81.72 66.74 24.88 2255 19.64 91.95 43.64 64.11
arlore SVDD 82.37 66.87 23.17 20.45 19.86 30.84 39.62 56.36
Self-supervision  PPRD 81.72 66.79 24.88 22.55 18.81 89.15 43.80 65.65
CH-SUpervIsion gprp 81.69 66.81 24.88 22.55 19.09 90.41 43.94 65.76
MDOD MODDIS  80.59 65.93 22.68 20.60 16.31 1.91 39.58 41.10
CAAE 82.82 66.97 24.04 20.97 17.62 17.56 40.14 54.48
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TABLE X: AUPR-normal (%) of different baselines on video based multi-view datasets.

Type UCSDped1 UCSDped2 UMN_scenel UMN_scene2 UMN_scene3 Avenue ShanghaiTech
SUM 97.95 96.23 99.39 96.69 97.42 98.13 91.72
Fusion MAX 97.77 95.31 99.31 96.41 97.15 98.11 91.00
NN 97.83 95.19 99.53 96.38 97.44 98.05 91.64
TF 97.89 96.04 99.43 96.56 97.48 98.10 91.54
DIS 97.66 94.72 99.11 96.28 97.30 98.25 90.51
Alignment SIM 97.85 95.43 99.13 96.20 96.94 97.13 91.10
DCCA 97.14 95.52 98.91 96.09 97.19 97.92 90.87
Tailored DAE 97.58 94.59 99.03 96.48 96.72 98.11 90.85
arlore SVDD 94.68 96.14 99.67 92.16 98.62 98.15 86.38
Self i PPRD 97.08 97.30 99.64 95.92 98.96 97.76 84.73
CH-SUpErvISIon  gpRp 97.17 96.85 99.66 96.94 98.57 98.11 87.18
MDOD MODDIS 96.87 95.22 99.71 94.69 98.50 97.80 87.40
CAAE 96.44 96.06 99.70 95.22 98.75 98.34 90.99

TABLE XI: AUPR-abnormal (%) of different baselines on video based multi-view datasets.

Type UCSDped1 UCSDped2 ~ UMN_scenel UMN_scene2 ~ UMN_scene3 Avenue  ShanghaiTech
SUM 44.51 72.89 95.36 75.49 80.51 35.67 31.10
Fusion MAX 37.86 68.74 94.61 73.89 79.33 31.29 27.41
usto NN 39.99 68.09 95.03 74.97 80.68 33.58 30.77
TF 44.50 72.34 95.37 75.37 81.09 36.02 30.47
DIS 39.85 66.87 94.46 73.93 80.70 41.74 27.09
Alignment SIM 4431 69.54 94.27 73.85 79.04 33.23 28.44
DCCA 33.84 66.77 93.03 73.01 78.91 35.26 28.98
Tailored DAE 39.52 66.45 93.99 74.50 78.77 31.71 27.42
SVDD 29.79 73.50 94.32 69.95 82.95 55.60 26.45
Self-supervision PPRD 39.58 75.30 95.41 72.50 85.24 25.00 15.83
“Supervis SPRD 41.04 73.81 95.72 74.67 82.02 27.98 19.61
MDOD MODDIS 37.13 65.66 94.82 73.00 82.97 37.05 19.39
CAAE 31.94 68.48 95.44 72.00 82.97 49.24 41.31

TABLE XII: TNR(%)@95%TPR of different baselines on video based multi-view datasets.

Type UCSDpedl UCSDped2 UMN_scenel UMN_scene2 UMN_scene3 Avenue ShanghaiTech
SUM 40.12 61.68 93.87 67.04 77.01 54.68 17.01
Fusion MAX 33.27 56.59 92.52 64.70 75.27 49.78 14.39
i NN 35.99 57.29 93.36 66.53 77.21 52.56 17.48
TF 39.92 60.82 93.82 67.17 77.07 54.47 16.53
DIS 35.37 55.24 92.69 64.94 78.13 46.01 13.82
Alignment SIM 40.31 58.63 92.23 65.12 74.23 46.42 14.69
DCCA 30.84 56.04 89.58 63.26 73.71 40.73 18.09
Tailored DAE 35.27 54.10 91.81 66.09 75.30 48.79 14.15
! SVDD 23.68 63.64 93.91 60.25 81.25 59.90 16.30
Self-supervision PPRD 38.47 64.21 94.16 63.01 83.13 35.54 4.13
upervist SPRD 39.90 63.33 94.29 65.70 79.75 38.75 8.52
MDOD MODDIS 37.09 53.52 93.70 64.16 80.21 45.85 8.55
CAAE 35.33 61.54 94.54 62.33 81.60 53.81 33.20

TABLE XIII: AUPR-normal (%) of different baselines on selected existing multi-view datasets with random train/test split.

BBC BDGP Caltech20 Citeseer Cora Reuters Wiki AwA NUS-Wide SunRGBD
SUM 75854147 428641020 98984035 361641420  43.67+165 13.8741030 3971414 1.34 1005 2.6940.13 17.47 £0.45
MAX 75.85+1.46 43444113 98.89+0.39 36.194137 43.594171 13.80+0.29 39.76 4155 1.4040.05 2.8240.18 17.20 4042
NN 75.834+146 425741 98974038 36224137 43554160 13514037 40.684145  1.371007 2.80+0.19 16.75 1055
TF 75824145 42264109 92314344 3643414 43744066 13994030  41.804174 1.33+0.09 2.5040.11 16.29 1061
DIS 75.84 1145  43.01x100  99.094020 36264139  43.671171 13991031 33761196 1.3510.04 2.51+0.16 16.201£039
SIM 75841144 42461106 98934030 36424134  43.81i1m 14154031 322441516 1.31+006 2444013 16.17 1067
DCCA 75864146 42774100 98744044 36384120  43.804170 14154034  34.264 148 1324005 252402 16.000.49
DAE 75.84i]_45 42.89i1_14 99.05i0_33 36.31i1,44 43.93;&1_& 1384:&0.28 31.63i1_93 1.33i0_04 2.38i0_10 16.21i0_44
SVDD 73.41i]_37 28.02i2_22 90.94i]_04 27.23i],45 40-41i201 16-94i0.82 31.23i1_5g 1.22i0.04 2.34i0.]5 5-65i0.39
PPRD 75844145  45.04110) 98.41 4051 36.13 41141 43554171 13.48 1031 45114135 1.37 4005 2.6340.14 16.96 1056
SPRD 75834147 42304107  98.664053 3624113  43.524166 1340403  46.33413 1.3940.04 2.98 4024 18.13 1036

MODDIS 73.78i]_24 16.84i]_34 44.56i]_7] 30.79i],2] 41.65i]A55 14.15i0_35 38.72i1_59 0.99i0_02 2-08i0_07 1.97i0,07
CAAE 71824144 2699413 96214067 28334135 40504163  15.064046 35194151 1.26 40,04 254 10.13 7.151056
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TABLE XIV: AUPR-abnormal (%) of different baselines on selected existing multi-view datasets with random train/test split.

BBC BDGP Caltech20 Citeseer Cora Reuters Wiki AwWA NUS-Wide SunRGBD
SUM 99.404007  97.804014 99974002 98361005 98741000 96504007  994li00s  99.551001  99.094001  99.53 1002
MAX 99.4040.07 97.80+0.16 99.951+0.04 98.36+0.06 98.74 10,09 96.50+0.07 99.42 105 99.55 1001 99.11+0.02 99.52 1002
NN 99404007 97771004 99971002  98.361006  98.741000 9650007 9941003 99.55+001 99.114002  99.521001
TF 99404007 97761015  99.624024 98361006  98.741000  96.504007 99431007 99.55t001  99.081o01  99.511t002
DIS 99.401007  97.8941016 99981001 98364006  98.744000 96504007 99274006  99.55+0.01 99.05+0.02 99.51 10.02
SIM 99.4040.07 97.88 +0.15 99.97 +0.02 98.36+0.06 98.74 +0.09 96.51+0.07 99.25 +0.06 99.54 10,01 99.05+0.02 99.50+0.02
DCCA 99404007 97881015 99971002 98361006  98.741000  96.51t007 99331006 99.55+001  99.05+002 99.504002
DAE 99.4040.07 97.90+0.15 99.98 +0.02 98.36+0.06 98.74 +0.09 96.50+0.07 99.23 10,05 99.55+0.01 99.03 +0.02 99.51 +0.01
SVDD 99.33 1007 97.294023 99.74 1005 97.04 1011 98.10+0.13 96.39 +0.09 99.14 1905 99.53 10,01 99.17 +0.05 98.814+0.08
PPRD 99404007  97.69+007 99921005  98.36+006  98.741000 9650007 99554004 99551001 99.12 1001 99.48 +0.01
SPRD 99401007 97491017 99931004 98361005 98741000 96501007 99531004 99564001 99.141002  99.53100
MODDIS 99354007 94574021 97334021 97794005 98.684010 96434007 99221010 99514001 98904003  97.621007
CAAE 99.24 1 05 97.24 1018 99.90+0.03 97.34 10,09 98.4610.11 96.41 10,09 99.33 1005 99.55+0.01 99.1940.04 99.0640.03

TABLE XV: TNR(%)@95%TPR of different baselines on selected existing

multi-view datasets

with random train/test split.

BBC BDGP Caltech20 Citeseer Cora Reuters Wiki AwA NUS-Wide SunRGBD
SUM 67.8243.12 33884204 99.77 +0.20 34.13 450 49.94 1305 24.204+072 62454944 12914059 21934145 4433 147
MAX 67.8243.12 33.64 4231 99.72 4020 34.14 418 50.08+3.08 2420072 62.86+4223 13.0141.02 21784141 43.2642.00
NN 67811313 33011260  99.75+031 34184184 50.004312 242040720 62.7314234 12964088  22.02116  43.68113s
TF 67811312 32811324 89341764 34164184 50.004306  24.2040720 62824300  12.9910s1 21174150 43351019
DIS 67.821312 35094295 99781012 34134581 50.024301 24204072 56.841305 12814082  21.041148  42.034144
SIM 67.824313 35414378 99791012 34131181 49954304 24204072 56.084290 12824075  21.18413 42.30+3.50
DCCA 67824313  35.854383  99.634034 3410418  50.024312 24204072 59.054318 12.8940.3 21.094170 42204043
DAE 67.824312  35.654314  99.831000 34134181 49984300 242040720 56401290 12764078 20934167  42.10+120
SVDD 66.3214.10 28.64+325 88.91 4195 18.644233 32484335 20.684 134 5217 4256 13.054120 18954118 16.8241 17
PPRD 67824312  29.66435 9944403 34134150 50024507 2420407 7022406 12944088 2168113  38.974199
SPRD 67.824313 27814242 99.6640.25 34.0841 30 50.07 +3.06 24.204072 69.30+243 13.17 40387 22314188 43.6042.74
MODDIS 66.26-1308 13.184 129 33.24 1399 25724152 45484304 22404082 56.43 445 13134119 19544113 6.68 1044
CAAE 63.68 1338 26914220 97.44 4+ 89 21304164 40.56+4.08 21.054 143 60.124234 13724140 20.114+150 21.69 4165

TABLE XVI: AUPR-normal (%) of different late fusion strategies on selected existing multi-view datasets.

BBC BDGP Caltech20 Citeseer Cora Reuters Wiki AwWA NUS-Wide SunRGBD
LF-AVG 75844145 42894114 99054033 3631a1as 4393116 13841025 31631105 133004 2384010  16.21404s
LF-MIN 72.624 159 43204109 97.054 058 31.544 117 34.604 158 13.594029 18.22 4124 1.24 1006 2.08 1009 14.23 1057
LE-MAX 65514093 27304785  66.771309 19944308  22.3314365 1031015 46494195 0.851002 1.98 +0.06 11.08 050

TABLE XVII: AUPR-abnormal (%) of different late fusion strategies on selected existing multi-view datasets.

BBC BDGP Caltech20 Citeseer Cora Reuters Wiki AwWA NUS-Wide SunRGBD
LF-AVG 99404007  97.90+0.15 99.984+0.02 98.36+0.06 98.74 +0.09 96.50-0.07 99.23 +0.05 99.55+0.01 99.03 +0.02 99.51+0.01
LF-MIN 99274008  97.901+018  99.95+003 98.19+0.07 98.20+0.11 96.24 10,07 98.88£0.08 99.52 1001 98.92 1002 99.4040.02
LF-MAX 99424004  93.614020  98.80+0.18 95.08 +0.10 95.73 +0.08 95.99 +0.04 99.50+006 99441001 99.11 40,02 99.45 +0.01

TABLE XVII: TNR(%)@95%TPR of different late fusion strategies on selected existing multi-view datasets.

BBC BDGP Caltech20 Citeseer Cora Reuters Wiki AwA NUS-Wide  SunRGBD
LF-AVG 67.824+312 35.65+3.14 99.83+0.09 34134181 49.98 1309 24204072 56.4042.90 12.76 4078 20.93 4167 42104120
LF-MIN 62414359  34.184367  98.034178 35464234 3623153  20.124077 48374024 11.51 4054 17984128 3570432
LF-MAX  71.534339 9.31 4064 61334318 23424070 31.194107 18634077  69.334338 12.3040.67 17274148 41.284004
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TABLE XIX: AUPR-normal (%) of different baselines on
existing multi-view/multi-modal datasets with given train/test

set split.

Type YtFace = CMU-MOSEI  DirverAD

SUM 50.54 18.08 97.59

Fusion MAX 50.02 18.05 97.31

S10 NN 50.17 18.06 95.94

TF 41.18 18.00 97.52

DIS 50.27 16.25 97.74

Alignment SIM 50.59 18.04 97.81

DCCA 43.00 17.83 97.77

Tailored DAE 49.91 18.14 97.08

DSV 50.72 16.81 88.55

Self-suvervision  PPRD 50.82 17.81 95.23

P SPRD 49.66 17.82 96.69

MODDIS  30.69 17.75 98.14

MDOD CAAE 49.86 2095 95.59

TABLE XX: AUPR-abnormal (%) of different baselines on
existing multi-view/multi-modal datasets with given train/test

set split.

Type YtFace CMU-MOSEI DirverAD

SUM 99.48 83.69 93.46

Fusion MAX 99.47 83.64 91.37

NN 99.48 83.73 81.61

TF 99.42 83.74 93.57

DIS 99.49 83.44 94.05

Alignment SIM 99.49 83.77 94.45

DCCA 99.47 83.86 94.66

Tailored DAE 99.49 83.92 89.52

DSV 99.56 83.26 77.20

Self-supervision  PPRD 99.49 83.79 83.33

P SPRD 99.46 83.67 88.92

MODDIS __ 99.29 33.77 95.50

MDOD CAAE 99.52 86.36 81.15

TABLE XXI: TNR(%)@95%TPR of different baselines on
existing multi-view/multi-modal datasets with given train/test

set split.

Type YtFace = CMU-MOSEI  DirverAD

SUM 43.54 12.30 82.65

Fusion MAX 42.00 12.27 78.37

ust NN 4334 13.28 43.63

TF 4131 12.15 81.09

DIS 43.53 12.81 84.51

Alignment SIM 43.70 13.03 85.43

DCCA 4341 14.02 86.56

Tailored DAE 4334 13.99 77.64

arlore DSV 49.03 8.18 51.03

Self-suvervision  PPRD 42.83 13.56 56.94

P SPRD 4281 13.15 68.29

MODDIS __ 38.05 12.90 88.58

MDOD CAAE 44.03 15.39 52.51
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