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ABSTRACT
Incomplete multi-view clustering is an important research topic in
multimedia where partial data entries of one or more views are miss-
ing. Current subspace clustering approaches mostly employ matrix
factorization on the observed feature matrices to address this issue.
Meanwhile, self-representation technique is left unexplored, since
it explicitly relies on full data entries to construct the coefficient
matrix, which is contradictory to the incomplete data setting. How-
ever, it is widely observed that self-representation subspace method
enjoys a better clustering performance over the factorization based
one. Therefore, we adapt it to incomplete data by jointly performing
data imputation and self-representation learning. To the best of
our knowledge, this is the first attempt in incomplete multi-view
clustering literature. Besides, the proposed method is carefully com-
pared with current advances in experiment with respect to different
missing ratios, verifying its effectiveness.

CCS CONCEPTS
• Computing methodologies → Cluster analysis; Statistical
relational learning; Spectral methods; • Theory of computation
→ Unsupervised learning and clustering; • Mathematics of
computing → Nonconvex optimization.
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1 INTRODUCTION
With the wide spread of multimedia technology in people’s life, it is
easy and natural to describe an object from multiple modalities. For
instance, a person can be identified from its biometric features, such
as physical appearance (image), and its social behaviors, including
Internet tweets (text), colleague relationships (graph), etc. How
to utilize them to build a better model is crucial and valuable in
real-world applications. Current multi-view, also known as multi-
modal, approaches address this issue by sufficiently exploring their
complementary information [13, 14, 20, 21, 32, 33, 39]. However,
the collected data are mostly incomplete in practice due to sensor
failure or human error. There are three types of data missing in
common sense, including feature missing, view missing and mixed
missing. Here concerns the view missing setting which is formally
defined in Definition 1.1.

Definition 1.1. Incomplete multi-view data (view missing). For 𝑛
given multi-view data entries, S𝑣 collects indexes of the observed
ones in 𝑣-th view. The 𝑖-th data entry is complete in 𝑣-th view if
𝑖 ∈ S𝑣 , or totally missing if 𝑖 ∉ S𝑣 . Besides,

S1 ∪ S2 ∪ · · · S𝑉 = {1, 2, · · · , 𝑛}, S1 ∩ S2 ∩ · · · S𝑉 ≠ ∅. (1)

To obtain the underlying discriminative information, clustering
research community has proposed a large set of methods for incom-
plete multi-view data. For instance, By constructing incomplete
kernels corresponding to each data view, Liu et al. try to learn a
complete consensus kernel on which the standard kernel 𝑘-means
technique is applied concurrently to obtain the clustering result
[23]. On the contrary, some late-fusion methods firstly employ the
basic single-view clustering techniques on each data view to com-
pute corresponding incomplete soft-label matrices, then regularize
them towards a complete one [22]. Besides, Cai et al. propose to
separately optimize partial clustering results with spectral tech-
nique on both individual and shared parts of different data views
[4]. The target solution is inferred by simply combining the partial
results. At the same time, neural network is adopted in incomplete
multi-view learning [25, 37]. Wang et al. map the data into bottle-
neck representations with independent encoders and integrate the
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Figure 1: Overview of the proposed algorithm. For the ease of presentation, two data views are concerned, including RGB
and depth images. From left to right, the incomplete multi-view data X are extracted into feature vectors. Then, a consensus
coefficient matrix Z is obtained with low-rank regularization. Meanwhile, the self-representation learning and missing data
imputation are jointly performed. At last, cluster assignments are generated from the coefficient matrix.

complementary information by employing t-student distribution
[30]. Generative adversarial network (GAN) is further utilized to
boost the clustering performance.

Apart from the aforementioned approaches, factorization based
subspace methods are well studied in incomplete multi-view set-
ting [11, 12, 17, 26, 28, 29, 35, 40]. For example, Li et al. factorize
data of each view to learn the latent subspaces independently but
enforce them overlapping at entries observed in all views [17, 40].
One step further, graph laplacian regularization is employed to
improve its clustering performance [26]. In addition, Hu et al. estab-
lish a consensus basis matrix with the help of ℓ2,1-norm regularized
regression to reduce the influence of missing entries [11]. By reg-
ularizing the divergences across all data views, Shao et al. push
all learned subspaces towards a common consensus [28]. To ease
the computing overhead problem of subspace clustering, Hu et al.
propose an one-pass algorithm embedded with regularized matrix
factorization and weighted matrix factorization [12]. Besides, Wen
et al. impose orthogonal constraint on basis matrices corresponding
to each view, at the same time, regularize data reconstruction with
binary weight to preserve the local structure [35].

Compared with factorization based methods, self-representation
subspace algorithm explicitly relies on all data entries to build cor-
responding coefficient matrix, resulting in a larger gap of adapting
it into incomplete multi-view setting. To the best of our knowledge,
few researches have been established to reduce this gap. However,
self-representationmethod, on the other side, benefits from the built
coefficient matrix, for it reflects the precise relationships among
data entries, making it feasible to achieve a better clustering perfor-
mance [16]. We also validate this by conducting an ablation study
in the experiment part. Therefore, we propose a self-representation
subspace clustering algorithm in incomplete multi-view setting
(IMSR). Taking two-view data as an instance, its overview can vi-
sualized in Fig. 1. Specifically, the incomplete multi-view data in
Definition 1.1 are first extracted into corresponding feature matri-
ces. Next, the self-representation subspace clustering is employed

to learn the coefficient matrix which is, at the same time, regular-
ized to be low-rank by approximating it with the multiplication of
low-dimension matrix. Nevertheless, the obtained coefficient ma-
trix guides to impute missing data as feedback, leading to a cyclical
procedure. Once the process converges, we can obtain the accurate
relationships among entries and compute the cluster assignments.
Overall, the contributions are summarized in the following.

(1) We shed the first light of self-representation subspace clus-
tering in incomplete multi-view data. At the same time, an
ablation study is designed in experiment to validate its effec-
tiveness by comparing with the factorization based subspace
method.

(2) With regularizing the coefficient matrix to be low rank, an
incomplete multi-view clustering algorithm (IMSR) is devel-
oped. Meanwhile, we design an alternate strategy to solve
the resultant optimization problem, and compare it with
current advances with respect to different missing ratios,
verifying its superiority.

2 RELATEDWORK
Given 𝑛 data entries {X𝑣 ∈ R𝑑𝑣×𝑛}𝑉

𝑣=1 drawn from 𝑘 distribu-
tions where 𝑑𝑣 refers to feature dimension of the 𝑣-th view, multi-
view clustering aims to group the data by exploring complemen-
tary information across 𝑉 views. Correspondingly, we employ
{S (𝑜)

𝑣 }𝑉
𝑣=1/{S

(𝑚)
𝑣 }𝑉

𝑣=1 to indicate index sets of the observed/missing
entries and denote {[X(𝑜)

𝑣 ,X(𝑚)
𝑣 ]}𝑉

𝑣=1 as the incomplete multi-view
data specified in Definition 1.1. Note that, [·, ·]/[·; ·] is the horizon-
tal/vertical concatenation operation. In the following are the closely
related subspace clustering reviews in incomplete data setting.

2.1 Factorization based Clustering
Non-negative matrix factorization [3] is the most typical and widely
used clustering technique in machine learning community. It ap-
proximates data X ∈ R𝑑×𝑛 with dot product of the so-called basis
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matrix U ∈ R𝑑×𝑘 and latent feature matrix V ∈ R𝑛×𝑘 as follows.

min
U,V

∥X − UV⊤∥2𝐹 , 𝑠 .𝑡 . U ≥ 0, V ≥ 0. (2)

Besides, a large volume of researches are conducted in matrix fac-
torization and can be generally summarized as

min
U,V

ℓ (X − UV⊤) + 𝜆R(U,V), 𝑠 .𝑡 . 𝛀(U,V) (3)

where ℓ refers to different norms. Meanwhile, R represents the
regularizations on U and V, including the non-negativity [3], or-
thogonality [6], etc. 𝛀 defines feasible regions of the variables.

Since matrix factorization method does not explicitly rely on the
relationships between data entries as shown in Eq. (3), it is natural
and straightforward to apply in incomplete multi-view data. Li et
al. [17] consider the two view consequence by minimizing

min
U1,U2,V1,V2




[X(𝑜)
1 ,X(𝑚1)

1 ] − U1 [V(𝑜) ;V(𝑚1)
1 ]⊤




2
𝐹
+ 𝜆∥V1∥2𝐹

+



[X(𝑜)

2 ,X(𝑚2)
2 ] − U2 [V(𝑜) ;V(𝑚2)

2 ]⊤



2
𝐹
+ 𝜆∥V2∥2𝐹

𝑠 .𝑡 .U1 ≥ 0, V1 ≥ 0, U2 ≥ 0, V2 ≥ 0,

(4)

in which V𝑣 = [V(𝑜) ;V(𝑚𝑣 )
𝑣 ], and (𝑚𝑣) specifies the entries only

missing in 𝑣-th view. It can be observed that the latent feature
matrices of two views share a consensus part at the observed data
entries. Subsequent researches [12, 28, 35] adapt this framework
into more than two views as

min
{U}𝑉

𝑣=1,{V𝑣 }𝑉𝑣=1,V∗

𝑉∑
𝑣=1

𝛽𝑣ℓ ( [X(𝑜)
𝑣 ,X(𝑚)

𝑣 ] − U𝑣 [V(𝑜)
𝑣 ;V(𝑚)

𝑣 ]⊤)

+ 𝜆R({U𝑣}𝑉𝑣=1, {V𝑣}𝑉𝑣=1,V∗)

𝑠 .𝑡 . 𝛀({U𝑣}𝑉𝑣=1, {V𝑣}𝑉𝑣=1,V∗, {𝛽𝑣}𝑉𝑣=1)

(5)

where V𝑣 = [V(𝑜)
𝑣 ;V(𝑚)

𝑣 ], and V∗ is the target consensus latent
feature matrix. R and 𝛀 are the regularizations and feasible regions
of {U𝑣}𝑉𝑣=1, {V𝑣}𝑉𝑣=1, V∗ and {𝛽𝑣}𝑉𝑣=1, respectively. Some literatures
[11] assume all data views can be factorized into an unique subspace
by imposing V𝑣 = V∗, ∀𝑣 .

2.2 Self-representation Clustering
In single-view setting, self-representation subspace clustering aims
to reconstruct each data entry with a linear combination of the
others, which can be formulated into

min
Z

ℓ (X − XZ) + 𝜆R(Z), 𝑠 .𝑡 . 𝛀(Z), (6)

in which Z ∈ R𝑛×𝑛 is named coefficient matrix and contains the
relationships across all data entries. In literature, ℓ and R are in-
stanced with multiple norms and regularizations, such as ℓ2-norm
[24], ℓ1-norm [7], graph regularization [10], etc. Besides, it is natu-
ral to extend self-representation clustering into multi-view setting.
By following the framework of factorization based methods in Eq.
(5), multi-view self-representation subspace clustering approach
[15, 36] for complete data is formulated into

min
{Z𝑣 }𝑉𝑣=1,Z∗

𝑉∑
𝑣=1

𝛽𝑣ℓ (X𝑣 − X𝑣Z𝑣) + 𝜆R({Z𝑣}𝑉𝑣=1,Z∗)

𝑠 .𝑡 . 𝛀({Z𝑣}𝑉𝑣=1,Z∗, {𝛽}
𝑉
𝑣=1).

(7)

Similarly, Z∗ is the consensus coefficient matrix of all data views.
There is common consensus that self-representation subspace clus-
tering method outperforms factorization based one, since it learns
more precise relationships across entries in Z. This can be validated
by the performance comparisons in literature under complete multi-
view setting, such as [16]. However, there leaves a research gap,
i.e. how to adapt self-representation subspace clustering into the
incomplete multi-view data.

3 THE PROPOSED ALGORITHM
In order to fill the gap between self-representation subspace clus-
tering and incomplete multi-view data, we propose the IMSR al-
gorithm. At the very beginning, ℓ2-norm and diagonal constraint
are employed to instance Eq. (6), since the resultant objective in Eq.
(8) can group the highly correlated entries together compared with
the others in literature, as claimed in [24].

min
Z

∥X − XZ∥2𝐹 + 𝜆∥Z∥2𝐹
𝑠 .𝑡 . diag(Z) = 0.

(8)

By following the framework in Eq. (7) under complete multi-view
data, Eq. (8) can be transformed into

min
Z

1
𝑉

𝑉∑
𝑣=1

∥X𝑣 − X𝑣Z∥2𝐹 + 𝜆∥Z∥2𝐹

𝑠 .𝑡 . diag(Z) = 0,

(9)

in which different data views are equally weighted and share a
consensus coefficient matrix Z. When considering the incomplete-
ness specified in Definition 1.1, we propose to perform missing
data imputation and self-representation learning simultaneously.
In specific, a consensus coefficient matrix is first computed with
zero-filling or random-filling data. Afterwards, the missing entries
can be imputed from the obtain coefficient matrix which is updated
accordingly. This iterative procedure can be accomplished by the
following objective.

min
{X(𝑚)

𝑣 }𝑉
𝑣=1, Z

1
𝑉

𝑉∑
𝑣=1




[X(𝑜)
𝑣 ,X(𝑚)

𝑣 ] − [X(𝑜)
𝑣 ,X(𝑚)

𝑣 ]Z



2
𝐹
+ 𝜆∥Z∥2𝐹

𝑠 .𝑡 . diag(Z) = 0,
(10)

where X(𝑜)
𝑣 and X(𝑚)

𝑣 refer to observed and missing entries of the
𝑣-th data view.

For a clustering-oriented self-representation subspace learning,
the obtained coefficient matrix are supposed to be low rank. Ideally,
Z ∈ Δ where

Δ = {Z | diag(Z) = 0, rank(Z) = 𝑘}, (11)

since the data are drawn from 𝑘 distributions. However, it makes
the objective hard to optimize by explicitly imposing the rank of
Z equivalent to 𝑘 . Instead, we push the coefficient matrix towards
F⊤F where F ∈ R𝑘×𝑛 is an orthogonal matrix. Finally, the overall
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objective can be formulated as

min
{X(𝑚)

𝑣 }𝑉
𝑣=1, Z, F

1
𝑉

𝑉∑
𝑣=1




[X(𝑜)
𝑣 ,X(𝑚)

𝑣 ] − [X(𝑜)
𝑣 ,X(𝑚)

𝑣 ]Z



2
𝐹

+ 𝜆∥Z∥2𝐹 + 𝛾 ∥Z − F⊤F∥2𝐹
𝑠 .𝑡 . diag(Z) = 0, FF⊤ = I𝑘 ,

(12)

where 𝜆 and 𝛾 are positive trade-off parameters. It can be observed
from Eq. (12) that both the observed and missing data participate in
the self-representation learning, i.e. the construction of coefficient
matrix Z. Nevertheless, the missing data entries {X(𝑚)

𝑣 }𝑉
𝑣=1 are

imputed along with the learning of Z. Once the iterative procedure
converges, off-the-shelf spectral clustering technique is applied on
corresponding laplacian matrix L = ( |Z| + |Z⊤ |)/2 to compute the
cluster assignments.

4 OPTIMIZATION
To solve the proposed objective in Eq. (12), we design an alternate
strategy [19] in which only one variable is optimized while the
others fixed. The overall procedure is summarized in Algorithm 1.

4.1 F Optimization
With a fixed Z, Eq. (12) can be reduced into

max
F

Tr
[
F(Z + Z⊤)F⊤

]
𝑠 .𝑡 . FF⊤ = I𝑘 , (13)

which is a standard kernel 𝑘-means optimization problem and can
be efficiently solved by off-the-shelf packages. In specific, Eq. (13)
reaches the optimal maximum when F takes the eigen-vectors of
(Z + Z⊤) corresponding to the largest 𝑘 eigen-values.

4.2 X(𝑚)
𝑣 Optimization

To fill the gap of self-representation learning in incomplete setting,
the proposed algorithm imputes the missing data entries with a
fixed coefficient matrix Z. The objective can be transformed into

min
X(𝑚)
𝑣

Tr
(
[X(𝑜)

𝑣 ,X(𝑚)
𝑣 ]B[X(𝑜)

𝑣 ,X(𝑚)
𝑣 ]⊤

)
, (14)

where B = I𝑛 − Z − Z⊤ + ZZ⊤. By replacing B with the form of
block matrix, Eq. (14) equals to

min
X(𝑚)
𝑣

Tr
(
[X(𝑜)

𝑣 ,X(𝑚)
𝑣 ]

[
B(𝑜𝑜) B(𝑜𝑚)

B(𝑚𝑜) B(𝑚𝑚)

]
[X(𝑜)

𝑣 ,X(𝑚)
𝑣 ]⊤

)
, (15)

which can be expanded to

min
X(𝑚)
𝑣

Tr
(
X(𝑚)
𝑣 B(𝑚𝑚)X(𝑚)⊤

𝑣 + X(𝑜)
𝑣 (B(𝑚𝑜)⊤ + B(𝑜𝑚) )X(𝑚)⊤

𝑣

)
.

(16)

From the definition of B, it can be observed that

B(𝑚𝑚) = (I𝑛 − Z) (𝑚)⊤ (I𝑛 − Z) (𝑚) , (17)

in which (I𝑛 −Z) (𝑚) refers to the columns of I𝑛 −Z corresponding
to missing entries in the 𝑣-th view. Thus, B(𝑚𝑚) is positive-definite
and Eq. (16) achieves the optimal solution when its derivative at
zero, resulting in

X(𝑚)
𝑣 = −X(𝑜)

𝑣 B(𝑜𝑚)B(𝑚𝑚)−1 . (18)

Algorithm 1 Self-representation subspace clustering for incom-
plete multi-view data (IMSR)

Require: Incomplete multi-view data {[X(𝑜)
𝑣 ,X(𝑚)

𝑣 ]}𝑉
𝑣=1, the num-

ber of clusters 𝑘 , parameter 𝜆 and parameter 𝛾 ;
Ensure: consensus reconstruction matrix Z;
1: Initialize Z;
2: while (𝑜𝑏 𝑗𝑡−1 − 𝑜𝑏 𝑗𝑡 )/𝑜𝑏 𝑗𝑡 ≤ 𝜎 do
3: Update F by solving Eq. (13).
4: Update {X(𝑚)

𝑣 }𝑉
𝑣=1 with Eq. (18);

5: Update Z with Eq. (29);
6: 𝑡 = 𝑡 + 1;
7: Calculate objective value 𝑜𝑏 𝑗𝑡 with Eq. (12);
8: end while
9: Compute the cluster assignments with ( |Z| + |Z⊤ |)/2;

4.3 Z Optimization
In the optimization of coefficient matrix Z, the other variables,
including X(𝑚)

𝑣 and F, are fixed. For the ease of expression, let
X𝑣 denote the horizontal concatenation of observed and missing
entries [X(𝑜)

𝑣 ;X(𝑚)
𝑣 ]. Semantically, the objective in Eq. (12) can be

decomposed into 𝑛 optimization problems with the 𝑖-th one as

min
z𝑖

1
𝑉

𝑉∑
𝑣=1



x𝑖𝑣 − X𝑣z𝑖


2
𝐹
+ 𝜆∥z𝑖 ∥2𝐹 + 𝛾 ∥z𝑖 − c𝑖 ∥2𝐹

𝑠 .𝑡 . z𝑖 (𝑖) = 0,

(19)

in which x𝑖𝑣 , z𝑖 and c𝑖 are the 𝑖-th column of X𝑣 , Z and C (C = F⊤F),
respectively. Observing that the 𝑖-th element of z𝑖 is compulsively
set to zero, Eq. (19) can be further transformed into an uncon-
strained one that

min
ẑ𝑖

1
𝑉

𝑉∑
𝑣=1



x𝑖𝑣 − X̂𝑖
𝑣 ẑ𝑖



2
𝐹
+ 𝜆∥ẑ𝑖 ∥2𝐹 + 𝛾 ∥ẑ𝑖 − ĉ𝑖 ∥2𝐹 , (20)

where X̂𝑖
𝑣 = [x1𝑣, · · · , x𝑖−1𝑣 , x𝑖+1𝑣 , · · · , x𝑉𝑣 ], at the same time, ẑ𝑖 and

ĉ𝑖 are produced by removing the 𝑖-th element of z𝑖 and c𝑖 . Eq. (20)
is able to be reformulated into

min
ẑ𝑖

Tr

[
E𝑖 ẑ𝑖 ẑ⊤𝑖 − 2( 1

𝑉

𝑉∑
𝑣=1

x𝑖⊤𝑣 X̂𝑖
𝑣 + 𝛾 ĉ⊤𝑖 )ẑ𝑖

]
, (21)

where

E𝑖 =
1
𝑉

𝑉∑
𝑣=1

X̂𝑖⊤
𝑣 X̂𝑖

𝑣 + (𝜆 + 𝛾)I𝑛−1 . (22)

It is easy to prove E𝑖 is positive-definite, indicating that Eq. (21) is
convex and takes the global minimum where its derivative equals
to zero. Thus, we can obtain the optimal ẑ∗

𝑖
as

ẑ∗𝑖 = E−1𝑖 ( 1
𝑉

𝑉∑
𝑣=1

X̂𝑖⊤
𝑣 x𝑖𝑣 + 𝛾 ĉ𝑖 ). (23)

However, it requires high computation complexity to optimize
Z via Eq. (23), due that an inverse operation of O(𝑛3) is needed to
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compute each column of Z. Defining

D =

(
1
𝑉

𝑉∑
𝑣=1

X⊤
𝑣 X𝑣 + (𝜆 + 𝛾)I𝑛

)−1
,

X𝑣P = [X̂𝑖
𝑣, x

𝑖
𝑣],

(24)

in which P is a permutation matrix that P⊤P = PP⊤ = I𝑛 . In such
setting, we can get[

P⊤
(
1
𝑉

𝑉∑
𝑣=1

X⊤
𝑣 X𝑣 + (𝜆 + 𝛾)I𝑛

)
P

]−1
= P⊤DP. (25)

Meanwhile, the following holds[
P⊤

(
1
𝑉

𝑉∑
𝑣=1

X⊤
𝑣 X𝑣 + (𝜆 + 𝛾)I𝑛

)
P

]−1
=

[ 1
𝑉

∑𝑉
𝑣=1 X̂

𝑖⊤
𝑣 X̂𝑖

𝑣 + (𝜆 + 𝛾)I𝑛−1 1
𝑉

∑𝑉
𝑣=1 X̂

𝑖⊤
𝑣 x𝑖𝑣

1
𝑉

∑𝑉
𝑣=1 x

𝑖⊤
𝑣 X̂𝑖

𝑣
1
𝑉

∑𝑉
𝑣=1 x

𝑖⊤
𝑣 x𝑖𝑣 + 𝜆 + 𝛾

]−1
=

[
E−1
𝑖

0
0 0

]
+ 𝜎𝑖

[
b𝑖b⊤𝑖 b𝑖
b⊤
𝑖

1

]
,

(26)

in which

b𝑖 = −E−1𝑖

(
1
𝑉

𝑉∑
𝑣=1

X̂𝑖⊤
𝑣 x𝑖𝑣

)
𝜎𝑖 = 𝜆 + 𝛾 + 1

𝑉

𝑉∑
𝑣=1

x𝑖⊤𝑣 x𝑖𝑣 −
1
𝑉

𝑉∑
𝑣=1

x𝑖⊤𝑣 (X̂𝑖
𝑣E

−1
𝑖 X̂𝑖⊤

𝑣 )x𝑖𝑣 .

(27)

Combining Eq. (25), (26) and (27), it can be obtained that

b𝑖 =
d̂𝑖
𝜎𝑖
, 𝜎𝑖 = d𝑖 (𝑖), (28)

where d𝑖 is the 𝑖-th column of D, d𝑖 (𝑖) is the 𝑖-th element of d𝑖 and
d̂𝑖 is the product of removing d𝑖 (𝑖) from d𝑖 . Therefore, the optimal
solution Eq. (23) can be efficiently computed by

ẑ∗𝑖 = −b𝑖 + 𝛾E−1𝑖 c𝑖

= −b𝑖 + 𝛾 (D̂𝑖 − 𝜎𝑖b𝑖b⊤𝑖 )ĉ𝑖

= − d̂𝑖
d𝑖 (𝑖)

+ 𝛾 (D̂𝑖 −
d̂𝑖 d̂⊤𝑖
d𝑖 (𝑖)

)ĉ𝑖

= 𝛾D̂𝑖 ĉ𝑖 −
1 + 𝛾 d̂⊤

𝑖
ĉ𝑖

d𝑖 (𝑖)
d̂𝑖 ,

(29)

in which D̂𝑖 ∈ R(𝑛−1)×(𝑛−1) is the sub-matrix of D by removing
the 𝑖-th column and row.

4.4 Convergence and Complexity
The proposed algorithm is theoretically guaranteed to be conver-
gent. For the ease of expression, we denote the objective in Eq. (12)
as

min
F,{X(𝑚)

𝑣 }𝑉
𝑣=1,Z

𝑓 (F, {X(𝑚)
𝑣 }𝑉𝑣=1,Z), 𝑠 .𝑡 . (F,Z) ∈ Δ (30)

Along with the iterative alternate optimization procedure, three
variables are separately solved at optimality with the others fixed.

With superscript 𝑡 denoting the optimization at 𝑡-th iteration, the
convergence analysis is provided as follows:

1) F optimization. Given {X(𝑚) (𝑡 )
𝑣 }𝑉

𝑣=1 and Z(𝑡 ) , F(𝑡+1) can be
obtained, leading to

𝑓 (F(𝑡 ) , {X(𝑚) (𝑡 )
𝑣 }𝑉𝑣=1,Z

(𝑡 ) )

≥ 𝑓 (F(𝑡+1) , {X(𝑚) (𝑡 )
𝑣 }𝑉𝑣=1,Z

(𝑡 ) ) .
(31)

2) {X(𝑚)
𝑣 }𝑉

𝑣=1 optimization. Given F(𝑡+1) andZ(𝑡 ) , {X(𝑚) (𝑡+1)
𝑣 }𝑉

𝑣=1can
be obtained, leading to

𝑓 (F(𝑡+1) , {X(𝑚) (𝑡 )
𝑣 }𝑉𝑣=1,Z

(𝑡 ) )

≥ 𝑓 (F(𝑡+1) , {X(𝑚) (𝑡+1)
𝑣 }𝑉𝑣=1,Z

(𝑡 ) ) .
(32)

3) Z optimization. Given F(𝑡+1) and {X(𝑚) (𝑡+1)
𝑣 }𝑉

𝑣=1, Z
(𝑡+1) can

be obtained, leading to

𝑓 (F(𝑡+1) , {X(𝑚) (𝑡+1)
𝑣 }𝑉𝑣=1,Z

(𝑡 ) )

≥ 𝑓 (F(𝑡+1) , {X(𝑚) (𝑡+1)
𝑣 }𝑉𝑣=1,Z

(𝑡+1) ) .
(33)

Combining Eq. (31), (32) and (33), we can get

𝑓 (F(𝑡 ) , {X(𝑚) (𝑡 )
𝑣 }𝑉𝑣=1,Z

(𝑡 ) )

≥ 𝑓 (F(𝑡+1) , {X(𝑚) (𝑡+1)
𝑣 }𝑉𝑣=1,Z

(𝑡+1) ),
(34)

illustrating that the objective value monotonically decreases along
with iteration. At the same time, it is easy to prove that the objec-
tive is lower bounded by 0. Therefore, the proposed algorithm is
convergent theoretically.

The computational complexity analysis is also analyzed cor-
responding to each sub-optimization problem. In specific, eigen-
decomposition on (Z + Z⊤) ∈ R𝑛×𝑛 is required to optimize F,
resulting in O(𝑛3) computational complexity. In X(𝑚)

𝑣 optimiza-
tion, it needs O(𝑑𝑣𝑛𝑜𝑛𝑚 +𝑛𝑜𝑛2𝑚) to solve Eq. (18) where 𝑑𝑣 , 𝑛𝑜 and
𝑛𝑚 refer to the feature number of 𝑣-th view, the observed entry
number and the missing entry number, respectively. For all views,
O(𝑣𝑑𝑣𝑛𝑜𝑛𝑚 + 𝑣𝑛𝑜𝑛2𝑚) is required. For 𝑍 optimization, computation
of matrix D is of O(𝑛3) in Eq. (24). Nevertheless, ẑ∗

𝑖
requires O(𝑛2)

in Eq. (29). Assuming the algorithm converges at 𝑡-th iteration, the
overall complexity is of O(3𝑡𝑛3 + 𝑡𝑣𝑑𝑣𝑛𝑜𝑛𝑚 + 𝑡𝑣𝑛𝑜𝑛

2
𝑚), which can

be simplified into O(𝑛3) respect to the entry number.

5 EXPERIMENT
At the very beginning, the experiment settings are introduced. Next
are the experiment results, including an ablation study to validate
the superiority of self-representation subspace clustering over the
factorization based one, performance comparisons with current
advances in literature and property exploration of the proposed
algorithm.

5.1 Setting
5.1.1 Dataset. In the experiments are employed eight popular
multi-view datasets to validate effectiveness and superiority of
the proposed algorithm, including BBCSport1 [8], Yale2 [2], ORL3

1http://mlg.ucd.ie/datasets/bbc.html
2http://vision.ucsd.edu/content/yale-face-database
3https://github.com/GPMVCDummy/GPMVC/blob/
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Table 1: Specifications of the used datasets.

Dataset Number of Dimension of View
Entry Cluster 1 2 3 4

BBCSport 116 5 1991 2063 2113 2158
Yale 165 15 4096 3304 6750 -
ORL 400 40 1024 288 - -
Olympics 464 28 4942 3097 - -
Still 467 6 200 200 200 -
BBC 658 5 4659 4633 4665 4684
Buaa 1350 150 100 100 - -
Leaves 1600 100 64 64 64 -

[27], Olympics4 [9], Still5 [5], BBC6 [8], Buaa7 [31] and Leaves8 [1].
Their details are specified in Table 1. To produce incomplete multi-
view data in Definition 1.1, 𝑛𝑚 = ⌊𝑛 ∗ 𝑟⌋ data entries are arbitrarily
removed in the first view with 𝑛 and 𝑟 being the entry number and
missing ratio. Then, we select another random 𝑛𝑚 entries in the
second view and remove those which exist in the first view, so as to
ensure all data are observed at least in one view. For later views, 𝑛𝑚
data entries are randomly removed. In the following experiments,
five missing ratios from 0.1 to 0.5 are considered.

5.1.2 Comparative Method. The proposed algorithm is thoroughly
compared with two baselines and seven advances in literature,
including

(1) LSRs (single-best baseline) first fills the missing entries with
random values. Next, LSR [24] algorithm is performed on
each view and the best results are reported.

(2) LSRc (concatenated baseline) first fills the missing entries
with random values and concatenates all views. Next, LSR
[24] algorithm is performed on the concatenated data.

(3) PVC [17] factorizes data of each view to learn the latent
subspaces independently but enforces them overlapping at
entries observed in all views.

(4) MIC [28] separately obtains the latent feature matrices of
each view and pushes them towards a common consensus
with ℓ2,1 regularization.

(5) IMG [40], based on PVC [17], employs the graph laplacian
to regularize the latent subspaces of each data view.

(6) DAIMC [11] is developed on weighted semi-nonnegative
matrix factorization. Specifically, it adopts the given instance
alignment information to learn a common latent feature
matrix, while constructs a consensus basis matrix with ℓ2,1-
norm to reduce the influence of missing entries.

(7) AGL [34] first constructs complete graphs of observed entries
corresponding to each view, then extracts their partition
information into a consensus representation.

(8) AWGF [38] utilizes feature extraction and incomplete graph
fusion in a framework. A sparse regularization is employed
to boost clustering performance.

4http://mlg.ucd.ie/aggregation/
5https://www.di.ens.fr/willow/research/stillactions/
6http://mlg.ucd.ie/datasets/bbc.html
7https://github.com/hdzhao/IMG/
8https://github.com/cswanghao/gbs/blob/

(9) PLR [18] adopts the weighted semi-nonnegative matrix fac-
torizationmodel to handle incomplete multi-view data. Upon
the consensus representation matrix, the locality graph is
constructed to regularize the shared feature matrix.

We directly use the codes publicly available on corresponding au-
thors’ websites, and grid search their parameters to report the best.
In the proposed algorithm, we set 𝜆 ∈ 2.ˆ[−10,−8, · · · , 10] and
𝛾 ∈ 2.ˆ[−10,−8, · · · , 10]. All algorithms are evaluated with three
widely used metrics, i.e. accuracy (ACC), normalized mutual infor-
mation (NMI) and purity. Moreover, corresponding code is publicly
available on Github9.

5.2 Result
5.2.1 Ablation Study. In literature, most subspace clustering meth-
ods in incomplete multi-view setting are developed on matrix fac-
torization technique, with few ones on self-representation learning.
However, the later technique benefits from the built coefficient
matrix which keeps the precise relationships among data entries,
and, as observed in related researches, achieves better clustering
performance. To validate this in experiment, we design an ablation
study by comparing the clustering performance of factorization
based and self-representation subspace clustering. For the sake of
fairness, we compare the original NMF [3] of Eq. (3) and LSR [24]
of Eq. (8) in incomplete settings, since corresponding multi-view
approaches appear with different regularizations, influencing the
performances to different degrees. Similar to LSR, NMF is also run
in two settings, including the single best and concatenated, as in-
troduced in Section 5.1.2. For the ease of comparison, we report the
performance averages over five missing ratios in Table 2, where the
best results are marked in bold. Although LSRs and LSRc achieve
worse results on ORL dataset, it consistently outperforms NMFs
and NMFc on BBCSport, Yale, Olympics, Still, BBC, Buaa and Leaves
in three metrics. This well validates the aforementioned claim and
provides a straightforward basis of our motivation to exploring
self-representation subspace clustering in incomplete multi-view
setting.

5.2.2 Performance Comparison. In order to validate effectiveness
and superiority of the proposed algorithm, we carefully compare
it with two baselines and seven advances in literature. Table 3
summarizes the results across all missing ratios and reports their
averages where the best results are marked in bold and the second
best with underline. Note that ’-’ indicates the algorithm reports
errors on corresponding dataset. Meanwhile, Fig. 2 presents the
clustering accuracy variation with respect to data missing ratio
on eight datasets. The NMI and purity comparisons are shown in
Appendix due to space limit. In the following are four observations:

(1) The proposed algorithm achieves better clustering perfor-
mances than two baselines, i.e. LSRs and LSRc, by large mar-
gins. In specific, 16.55%, 19.98%, 23.13%, 12.66%, 3.24%, 31.24%,
0.81% and 10.43% ACC, 26.48%, 18.35%, 17.59%, 12.49%, 2.03%,
35.01%, 0.28% and 8.44% NMI and 18.28%, 19.46%, 24.22%,
13.28%, 2.83%, 26.26%, 0.57% and 11.34% purity are observed
on eight datasets in average. This illustrates that IMSC inte-
grates the beneficial information of different data views in

9https://github.com/liujiyuan13/IMSR-code_release
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Table 2: Average performance comparison betweenNMFandLSR. The postfix ’s’ and ’c’ refer to the single best and concatenated
settings as introduced in Section 5.1.2.

Dataset ACC NMI Purity
NMFs LSRs NMFc LSRc NMFs LSRs NMFc LSRc NMFs LSRs NMFc LSRc

BBCSport 39.31 60.17 30.86 38.97 16.73 42.88 6.39 17.16 47.41 68.10 37.76 47.07
Yale 36.36 50.30 27.39 42.30 41.11 52.78 31.31 44.85 36.73 51.03 28.61 43.15
ORL 41.85 41.50 41.30 32.20 59.00 60.98 58.45 53.31 44.50 43.35 44.20 34.70
Olympics 42.63 60.52 33.28 59.53 52.16 66.45 43.08 69.67 51.51 65.82 42.59 69.09
Still 25.95 29.85 24.67 27.54 5.54 9.56 4.49 6.56 28.57 32.38 26.34 29.98
BBC 33.46 57.11 25.84 54.69 5.58 35.74 0.71 33.01 38.69 62.19 33.28 58.83
Buaa 1.93 40.50 1.93 52.61 13.07 67.57 13.07 76.78 11.70 42.06 11.70 55.13
Leaves 37.75 41.39 21.55 21.96 63.16 65.06 49.54 50.75 39.28 42.69 22.43 22.85
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Figure 2: Performance (ACC) comparison with advances in literature. PVC is not presented on BBC due to time out error.

a more proper way than directly concatenating them into a
single feature vector.

(2) The proposed algorithm consistently outperforms seven
comparative methods across all missing ratios and datasets.
To a closer look at the average performances, it exceeds
best results of the others by 3.45%, 3.32%, 3.36%, 6.15%, 0.80%,
4.01%, 0.81% and 3.49% ACC, 8.57%, 1.02%, 1.78%, 5.07%, 1.00%,
4.89%, 0.28% and 1.90% NMI and 5.17%, 3.15%, 1.99%, 7.07%,
0.30%, 4.01%, 0.57% and 3.35% purity, verifying its effective-
ness and superiority over the current literatures.

(3) The baselines obtains better results than several compar-
ative methods on specific datasets at a large set of miss-
ing ratios. For instance, LSRs exceeds MIC, IMG and AWGF
across all missing settings. It is worth to note that compara-
tive methods are developed on matrix factorization, which
demonstrates the merits of self-representation learning on
incomplete multi-view data again.

(4) PVC and MIC method fails on Still and Buaa, respectively,
by achieving worse results far from the averages of the other
algorithms at all missing ratios. Meanwhile, the similar con-
sequence can be observed in AGL on Leaves. These observa-
tions illustrate the instability of corresponding comparative
methods, but conversely demonstrate the superiority of the
proposed algorithm.

Overall, the proposed algorithm outperforms the baselines and
literature advances consistently, verifying its superiority.

5.2.3 Parameter Study and Convergence. In addition, a parameter
study is conducted on the proposed method. Specifically, we per-
form grid search on the two parameters, i.e. 𝜆 and 𝛾 . Corresponding
results on BBCSport are shown on the left of Fig. 3. The red color
refers to ACC variation of IMSR with respect to 𝜆 by fixing 𝛾 = 20,
while blue indicates the one respect to 𝛾 by fixing 𝜆 = 21. Nev-
ertheless, the baselines are marked in black and set to their best
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Table 3: Average performance comparisonwith advances in literature. The best results aremarked in bold and the secondwith
underline. In addition, ’-’ indicates the algorithm fails on corresponding dataset due to time out error.

Dataset LSRs[24] LSRc[24] PVC[17] MIC[28] IMG[40] DAIMC[11] AGL[34] AWGF[38] PLR[18] IMSR

ACC

BBCSport 60.17 38.97 32.03 40.86 43.90 73.28 67.24 37.29 70.17 76.72
Yale 50.30 42.30 38.10 33.82 57.13 60.73 57.58 66.96 63.88 70.28
ORL 41.50 32.20 41.61 38.24 35.30 56.10 43.20 61.27 60.50 64.63
Olympics 60.52 59.53 49.95 28.84 26.47 59.87 67.03 43.09 64.87 73.17
Still 29.85 27.54 21.63 28.39 29.46 32.29 28.22 29.83 31.65 33.09
BBC 57.11 54.69 - 40.55 41.34 58.01 84.44 33.40 72.70 88.45
Buaa 40.50 52.61 20.83 1.93 21.10 27.05 23.08 50.74 35.99 53.41
Leaves 41.39 21.96 12.78 40.70 37.36 48.33 47.88 44.34 47.63 51.81

NMI

BBCSport 42.88 17.16 7.21 17.18 23.04 60.49 60.10 14.51 59.51 69.06
Yale 52.78 44.85 42.97 37.43 60.62 64.86 61.34 70.11 66.41 71.13
ORL 60.98 53.31 60.90 57.86 52.55 73.73 63.80 76.79 75.83 78.57
Olympics 66.45 69.67 62.62 41.77 35.12 72.44 74.28 55.92 77.09 82.16
Still 9.56 6.56 0.68 8.58 10.13 10.60 7.91 8.90 10.52 11.59
BBC 35.74 33.01 - 20.20 18.09 40.92 65.87 3.95 53.31 70.75
Buaa 67.57 76.78 57.13 22.15 44.93 62.45 60.21 71.77 67.91 77.06
Leaves 65.06 50.75 39.41 66.52 60.75 71.59 71.32 56.40 70.61 73.49

Purity

BBCSport 68.10 47.07 39.23 43.45 45.10 81.21 78.28 43.19 80.00 86.38
Yale 51.03 43.15 39.71 34.91 57.75 61.58 58.55 67.52 64.36 70.67
ORL 43.35 34.70 44.95 40.89 40.06 59.70 45.65 65.58 63.55 67.57
Olympics 65.82 69.09 60.14 40.09 32.88 70.78 72.76 53.32 75.30 82.37
Still 32.38 29.98 21.71 30.75 31.15 34.90 31.13 31.76 34.30 35.20
BBC 62.19 58.83 - 47.09 43.33 61.17 84.44 36.02 73.69 88.45
Buaa 42.06 55.13 21.99 11.70 25.11 29.11 24.53 53.69 38.04 55.70
Leaves 42.69 22.85 14.84 43.47 40.23 50.68 50.13 46.91 49.85 54.03

values, since they do not share the same parameter setting with
our algorithm. We can see that the proposed method keeps rela-
tively stable when 𝜆,𝛾 ∈ 2.ˆ[−10,−8, · · · , 0]. Therefore, they are
recommended to set from 0 to 1 in practice. At the same time, we
visualize objective values of the proposed algorithm by iterating
the alternate procedure 50 times. It is obvious that the objective
monotonically decreases along with iteration to a minimum.

6 CONCLUSION
Current subspace clustering advances mostly adopt the matrix
factorization technique to deal with incomplete multi-view data,
leaving self-representation approaches unexplored. However, self-
representation subspace clustering is observed to enjoy a better
performance than the former one. Therefore, we, to the first attempt,
overcome the gap that it build the coefficient matrix by explicitly
relying on all data entries which is contradictory to incomplete set-
ting. In specific, the missing data imputation and self-representation
learning are elegantly utilized into a cyclical procedure. Addition-
ally, extensive experiments are conducted to validate effectiveness
of the proposed algorithm.
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